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Steady to unsteady dynamics of a vesicle in a flow
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We investigate the dynamics of a vesicle in a shear flow on the basis of the newly proposed advected field
(AF) method[T. Biben and C. Misbah, Eur. Phys. J.6%, 031908(2003]. We also solve the same problem
with the boundary integral formulation for the sake of comparison. We find that the AF results presented
previously overestimated the tumbling threshold due to the finite size of the membrane, inherent to the AF
model. A comparison between the two methods shows that only in the sharp interfadeirapolating the
results to a vanishing widilthe AF method leads to accurate quantitative results. We extensively investigate
the tank-treading to tumbling transition, and compare our numerical results to the theory of Keller and Skalak
which assumes a fixed ellipsoidal shape for the vesicle. We show that this theory describes correctly the two
regimes, at least in two dimensions, even for the quite elongated non-convex shapes corresponding to red blood
cells (and therefore far from ellipsoidalThis theory is, however, not fully quantitative. Finally we investigate
the effect of a confinement on the tank-treading to tumbling transition, and show that the tumbling regime
becomes unfavorable in a capillary vessel, which should have strong effects on blood rheology in confined
geometries.
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A vesicle is a closed phospholipid membrane, separatingtand some pathologies, or to design artificial devices. Since
an internal fluid from the external suspending medium. Theblood properties are very sensitive to experimental condi-
size of a vesicle can vary in quite a broad range from a fewions, a special effort is made to find blood analogs, mimick-
tens of nanometers, in which case they are called liposomegg their rheological properties without the biological com-
up to a hundred microns, where they are named gianplications. At a more microscopic scale, blood is responsible
vesicles. The shape of these vesicles strongly depends on tfsr cell transport and can then play an active role in the
swelling ratior, which expresses the volume/surface ratio inpropagation of some pathologies, like cancer for example.
a dimensionless form=6./7V/S*? whereV denotes the Mechanical models have then been suggested to describe the
internal volume of the vesicle arilits area. While a spheri- dynamic of a red blood cell in an external flow, like the
cal shape corresponds te-1, 7 can vary in practice between “capsule” model, which aims at a quantitative description of
0 and 1, and give rise to a large variety of equilibrium shapesed blood cell flows. These models include elastic properties
as studied after the seminal works by Canham, Helfrich, andf the red blood cell membrangsee, e.g., Refd.10-15).
Evans[1-3] by many authors sincet—8]. Among the vari-  Our scope here is different; instead of including all the rel-
ety of observed shapes is the oblate shape, for 8592 evant physical ingredients necessary to derive a quantitative
<0.651, and the stomatocyte shape f6r0.592 (after Ref.  description of blood flows, which is certainly of very impor-
[5]), which coincide with the usual equilibrium shapes of redtant practical interest, but unfortunately often shadows
blood cells. Since giant vesicles can be as large asgd®0  simple, but important physical mechanisms, we want to iden-
their properties can be investigated using standard opticaify these elementary mechanisms by including a minimal set
microscopy techniques, and constitute, therefore, in view obf physical ingredients on the contrary. More realistic models
their conceptual simplicity, a theoretical and experimentalcan then be constructed step by step, isolating the influence
model system for blood flows. Of course there is no commorof each physical ingredient at a time. From this point of
point between a red blood cell and a vesicle from the biowview, a vesicle constitutes the ideal starting point for this
logical point of view; a vesicle only contains phospholipids, kind of approach, since its equilibrium properties depend on
a major ingredient of cell membranes, but has no biologicathe swelling factorr and the area difference between the
function. Interestingly, it should be possible to incorporateinternal and external monolayers, and its dynamical proper-
more complicated, and biologically relevant, ingredients liketies are controlled by a very small set of dimensionless num-
proteins to the phospholipid membrane to selectively activatéers, two in the simplest approach and three when a viscosity
some biochemical properties. Equivalently, the encapsulatecontrast between the encapsulated fluid and the external me-
fluid could be modified to mimic in a more realistic way the dium is accounted for. In this paper we shall keep the analy-
internal medium of a red blood cell. It is, however, not our sis rather simple by disregarding the area difference between
purpose here to model the biological properties of a redhe monolayers, though we are aware of the importance of
blood cell. Rather we will focus on their mechanical proper-this ingredient with regard to equilibrium shapes. The key
ties. Understanding blood rheology is a major issue for biosimplification comes from the liquid nature of the membrane.
medical applications. At the macroscopic scale blood is dt shares the same inextensibility property with red blood
non-Newtonian fluid(see, e.g., Ref[9]), and a precise cell, which is certainly the reason for the success of this
knowledge of its flowing properties is necessary to undernaive model, but there is no shear modulus, in contrast with
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n tortion does not cost any energy, whereas if the membrane is
elastic(as red blood cells ayét will store elastic energy. For

a liquid inextensible membrane, the only energetic contribu-
tion is then in out of plane deformations, which are essen-
tially bending modes. Several models have been considered
for the membrane energy, starting from the simplest model
suggested by Helfrich2],

K K
FIG. 1. Schematic drawing of a vesicle. EHZEJ (C1+cp)%dS+ Ef €1CdS, 1)

red blood cells for which a weak shear modulus is revealedwherec; andc, are the two main curvatures, in three dimen-
This is indeed a great simplification since accounting forsions, at a given point of the membrane. The total curvature
shear elasticity raises the problem of the tensionless refee; +c¢, and the Gaussian curvatuogc, are the two geo-
ence surface, which is unknown for red blood cells, andmetrical invariants characterizing the surface at a given
strongly affects the resultfl5]. The vesicle model sup- point. Since curvatures are algebraic, and physical properties
presses this difficulty, rendering an interpretation of the re-of the membrane do not depend on the precise sign of these
sults much simpler. Moreover, although very simplistic, thequantities if the membrane is symmetrical, the energy should
vesicle model seems to be qualitatively, but also semiquarbe quadratic. Integrals are calculated over the surface of the
titatively, quite reliable to describe the physical effects ob-membranex and’x are the elastic moduli characterizing the
served in blood flows. In this paper we present a quantitativewo possible deformation modes, and we have assumed that
numerical study of the tank-treading to tumbling transition inthe membrane is homogeneous to extract them from the in-
vesicular systems, and show that the Keller-Skale)  tegrals. Thanks to the Gauss-Bonnet theorem the Gaussian
theory[16], based on fixed ellipsoidal shapes, correctly de-contribution is a constant that only depends on the topology.
scribes the transition mechanism, even for highly nonellipAWhen the vesicle is not subjected to topological changes
soidal shapes in two dimensions. This transition between dike budding for examplex does not play any role. We will
steady regime and a nonsteady tumbling motion is indeed adccordingly disregard the Gaussian contribution from the en-
fundamental importance in blood since it strongly affects itsergy in the following. When minimizing the energy, the con-
rheological propertief9]. Moreover we show that a confine- straint of local inextensibility of the membrane have to be
ment of the vesicle between two rigid walls shifts the loca-accounted for, using for example a local Lagrange’s param-
tion of the transition, which should have consequences oter(s,t) which is a function of the arclengttand of time
the rheological properties of blood in capillary vessels. in dynamical regimes
In Sec. | we present the model, the parameters and the
general equations. The numerical techniques we used to
solve the hydrodynamic free boundary problem are presented E=En+ j {(s,n)ds.
in Appendixes A, B and C, where we revisit the newly pro-
posed advected fieltAF) method[17], and analyze the sen- A minimization of the total energy can be performed to com-
sitivity of the method to internal parameters. In Sec. Il wepute the equilibrium shapes of the vesicle. Interestingly, the
compare the numerical results to the KS theory, and analyzeelfrich formulation is scale invariant, which means that the
the dissipation in Sec. Ill. Section 1V is devoted to confine-typical size of the vesicle does not play any role. The only
ment, and a discussion with some open questions is prgelevant parameter is the swelling ratio=6.7V/S*?,
sented in Sec. V. Some technical calculations are relegated {ghere V is the volume of the vesicle an8 its area ¢
the Appendixes. =4xS/P? in two dimensions wherP is the perimeter of the
vesicle. When a flow is applied, hydrodynamical quantities

I. MODEL AND EQUATIONS will enter into play, which will be considered now.

A. Model B. Hydrodynamical equations

~ Avesicle is a closed phospholipid membrane as depicted sjnce the typical size of a vesicle is of the order of @,

in Fig. 1, ideally a bilayer, but sometimes a multilayer mem-ang typical shear rates applied to these vesicles are usually
brane. Depending on temperature, and the chemical nature gfnaller than 10 Hz, the Reynolds number can be estimated to
the surfactants, the molecular organization of the membrange of the order of 10° in water. Inertial effects are then
can be of the liquid type, or correspond to a crystal, or everhegligible and the appropriate equation to describe the hy-

form a gel-like structure. At a mesoscopic scale, the megrodynamic flow inside and outside the vesicle is the Stokes
chanical properties of the membrane can then vary from @quation

two-dimensional liquid to an elastic solid. In any case, the

extensibility of the membrane is very low, and it is usually V-o0—Vp+f,=0, 2
assumed to be inextensible; we will use this assumption here.

The other possible in-plane deformation is a shear. If thavhereo= 7(Vv+Vv') is the Newtonian stress tensgro-
membrane is purely liquid, as we will assume here, this distation T denotes a transposition of the gradient velocity ten-
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son, 7 is the viscosity of the considered medilfor water  of the fluid; a typical relaxation time can be constructed as
7=1.0x10"2 P at 20°C(gcm 's Y], v is the velocity tshape= 7R/ k, Wherenis a viscosity. We take the viscosity
field, p is the pressure field arfd,; is the local force exerted of the external fluid to define various quantities of physical
by external objects, like the vesicle itself and eventually ainterest, and it will be denoteg,,; (while #;, refers to that
substrate, on the fluid. Finally, the liquid is incompressibleof the liquid inside the vesicjeThe typical temporal scale of

for all practical purposes, entailing that: the shape evolution i§,p 7outR%/ k, WhereR is a length
scale which we will choose &8=+/S/ 7 in two dimensions,
V-v=0. 3 the radius of the disk of the same area. Indeed, these defini-

The contribution of the vesicle to the external force can be“?(?sr ba??g ogitdldmensminzl contsr;de\zianon?t d? tci)nliy [r)]rotvtlde
derived from its configurational Hamiltonian orders of magnitude, as long as the viscosity ratio IS not too

large (=10) the replacement ofy;,, by 7, will not change

K the overall picture. In the presence of a shear flow, the shear
E= Ef CzdS+J {(s)ds, (4)  rate y defines a time scale #/and therefore, combined to
tshape WE can construct the dimensionless numbeg
where we recognize the curvature enefthe first term cor- = 70utYR*/x which characterizes the deformability of the

responding to the Helfrich theofg], c is the local curvature Vesicle under the hydrodynamic constrajntThe largerC,

of the membrane= ci+c, and s denotes the coordinates is, the Iarger the deformation due to the flow. When allow-
along the membranéthe curvilinear coordinate along the ance is made for a viscosity contrast between the internal
contour of the vesicle in two-dimension is the curvature fluid and the suspending medium, the viscosity ratio
rigidity, and the second term expresses the constraint of fixed 7in/ 77out Will 2lso come into play. To summarize, the three
perimeter.£(s) is a local Lagrange’s parameter expressingrélevant parameters in the problem are

the absence of local dilatation of the membrane. The force
field exerted by the vesicle on the flow is simply given by
foext= — OE/6R, where R is a local elementary translation

of the membrane forming the vesicle.

The last prescription needed to derive the dynamical
equations for the vesicle is the boundary condition for the
velocity field at the membrane. The simplest prescription
compatible with the absence of permeation is to assume that
the vesicle is purely advecte@iransported by the flow,

which means that the local velocity of the membrane is the A Shear flow can be viewed as the superposition of a pure
local velocity of the flow: rotational flow and an elongational flow which main elonga-

tion axis is oriented at 45 from the shear direction. That is we

r=47S/P? in two dimensions,
C= 7outYR¥/ k,
r'=%in! Nout-

Il. TEST OF THE KS THEORY

Vmen=V. (5) can write a simple shear=(yy,0) as
The final set of equations is then v=Mgr+Mar, (7)
V.0—Vp+fo=0, where Mg (with componentdM 2*=M¥Y=0 andMY=M¥*
= vy/2) is a traceless symmetric matfietescribing the strain-
V.v=0, ing of the vesicle alongr/4), while M, (with components
MY*=M¥’=0 andM}’= y/2 andM2*= — y/2) is a traceless
oE antisymmetric matrix, representing the rotational part of the
fexi=— SR’ flow.
When an object is placed in such a flow it experiences a
Vinen=V. (6)  torque inducted by the rotational component of the velocity

field, and a torque due to the elongational part which tends to
These equations have to be solved numerically, and we wilbrient the particle at 45 from the shear direction. The result-
consider both the boundary integral meth@ppendix A  ing motion of the particle depends on the competition be-
and the AF metho@Appendix B. A comparison between the tween these two components of the flow, and the generic
two methods is the subject of Appendix C. We will mostly evolution equation for the orientatiahof a particle is of the
use the boundary integral method for quantitative compariform
sons with the KS theorySec. 1) and the AF method for
qualitative discussion&Sec. Ill). We will now more specifi- % —A+Bcog26) ®
cally consider the two-dimensioné2D) geometry. dt '

whereA andB are two coefficients characterizing the com-
petition. Of course, all the complexity of the problem lies in
The first relevant parameter is the swelling ratidhat  the determination of these coefficients in a particular situa-
controls the equilibrium shape of the vesicle. The relaxatiortion, but Eq.(8) shows that basically two regimes are pos-
time of the shape of the vesicle is controlled by the viscositysible: when|A/B|<1 a steady state can exist, and the orien-

C. Relevant parameters
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FIG. 4. Orientation angle as a function of the viscosity ratio for
various values of the swelling ratio.

- swelling ratio7=0.8. In this figure we plot the variations of
: ; : - Cia : the equilibrium angled as a function of the viscosity ratio
Shel;erf.lOZ\I.V.schematlc drawing of a tank-treading vesicle in a S|mplef0r two different values oC, (0.75 and 0.075 We observe
a variation only close to=1 which remains far away from
. i _ the transition. This lack of sensitivity is very interesting since
tation is given by cos(@=—A/B (the tank-treading regime it means that the constraints of fixed perimeter and ésea
and'when|A/B|>.1 the motion cannot be stationary and theace and volume in three dimensigmse playing the leading
particle rotates in the flow(the tumbling regimg Two  gle, and the precise value &f the curvature modulus, is not
branches exist in the ta_mk-treadlng regime corr-espondlng t9ery important in theC <1 regime. This property is very
= *arccost-A/B)/2. With the conventions of Fig. #>0  interesting from an experimental point of view, since usually
corresponds to the stable branch while0 is unstable. The . s difficult to measure. The dynamical situation is then
two branches meet #=0, which corresponds to the limit of qyite similar to the equilibrium situatiofmo flow), for which
tation ¢ varies from 45 degrees to zero, reached [®B|  relevant parameters are thusand r, the viscosity ratio.
=1, and a transition to a tumbling motion occurs for largercjose to the transition, the KS theory predicts a square root
of transition is called a saddle-node bifurcation. In their pa-is |inear inr and 9= arccos{-A/B)/2, once linearized around
per, Keller and Skalak were able to derive expression#\for _ A/g~1 |eads to a square root Iawrhis square root law is
andB on the basis of Jeffery’s work on rigid ellipsoifs8],  represented in Fig. 3 and is seen to be fairly well reproduced.
and they applied their theory to the special case of red blooghgeed an extrapolation t9=0 of this square root fit is a
cells. In view of the importance of this tank-treading to tum- powerful way of measuring the critical viscosity ratig.
bling transit_ion for blood rh_eology, it seems interesting t0The quantitative comparison with the KS theory exhibits
compare this theory numerically to the full free boundarysome discrepancies, this theory tends to slightly underesti-
resolutlon. Smce the deformability of the particle is not takenmate the critical viscosity ratio,. A more systematic study
into account in the KS theory, we chose to consider the rejs pyresented in Fig. 4, where we can see the variations of the
gime C,<1 which corresponds to weakly deformable main axis orientatiom as a function of the viscosity ratio for
vesicles. We checked that in practice the precise valu®,0f \5rious values of the reduced surface
does not affect the results much, as shown in Fig. 3 for a | ths figure the dashed lines correspond to the KS theory
in two dimensions, while the simulation data using the inte-

30‘ [T T assiinanasansssasiie gral method are represented by the symbols. We can see that,
¥ N E;uii:briumangleeog 075 aIthog_gh thg KS theory captures Fhe generic scenario of the
o Equilibrium angle c:=o.75 ] transition, still some quantitative discrepancies exist between
% 20 4 | savareroot law i the theory and the numerical results: the critical viscosity
go ratios are a bit underestimated by the theory. Interestingly,
8 1sf Py =08 . the difference between the theory and the numerical data
S T does not seem to be very sensitive to the swelling ratio
@ 10 although it could be expected to be larger for low values of
5' for which the equilibrium shapes are far from ellipsoidal. A
I final comparison between the KS theory and the numerical
free boundary resolution is seen in Fig. 5, where the KS

viscosity ratio "r" 4 predictions forr are confronted to both the AF results and
the boundary integral resolution. We basically observe the
FIG. 3. Orientation angléin degreesas a function of the vis- same trend as already mentioned. Amazingly, the free bound-
cosity ratio for7=0.8 and two values of, . ary numerical resolution in two dimensions seems to be
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FIG. 7. Internal dissipation rate as a function of the viscosity

FIG. 5. Tank-treading to tumbling transition curve. Here we atio

compare the AF data, the Green function formulation, and the K
theory. Two values ofe are plotted for the AF method and the where the integration covers the volume where dissipation
extrapolateds=0 (see Appendix Cvalue superimposes quite well occurs. If we assume that the range of the flow perturbation
on those obtained using the boundary integral formulation. due to the sphere is proportional to its radRjgeplacingVv

3
closer to the 3D KS predictions for a prolate shape than tth v/R and the volume integration by R™ we recover the

2D expectations, but this is probably purely accidental. Classical dependencies of the Stokes force, namély,
« pvR. This kind of heuristic analysis can be powerful when
Il ANALYSIS OF THE TRANSITION WITHIN Ithe t};}plcal Iscales are well dheflned. Converse[y, when several
THE AF APPROACH ength scales compete such arguments require a more quan-

titative analysis. This is indeed the case here where the

Stationary states result from a balance between the energyvelling ratior, which is directly connected to the ratio be-
flux entering in the system and the hydrodynamic dissipatween the large and the small axis of the vesicle, plays a key
tion. From this general consideration it is, for example, easyole. We thus have to analyze dissipation in more details.
to extract the main dependences of the Stokes drag force In Fig. 6 we present isocontour plots of the dissipation
acting on a sphere moving at velocityin a viscous fluid:  field for a vesicle of reduced surfaege=0.91 and for differ-
the injected energy is simplifv, whereF is the force ex- ent viscosity ratiosy;, / 7,,:= 2.0, 4.0, 6.0, and 7.Blose to
erted on the sphere to compensate for the Stokes force; thibe tumbling transition foe/R=0.068]. We can see that

dissipation rate is given by dissipation is localized in a very narrow areatsidethe
vesicle, we also see contributions along the diagonal axis due
77 ‘9U| ‘9”1 d to the elongational component at 45 degréas checked
Ehydro V (9)

that these lines are not finite size effects by changing the box
shape. Indeed, the tank-treading motion creates very little
dissipation inside the vesicle. This is not itself a surprise
since for a purely circular shage=1), the internal flow is
purely rotational and therefore does not dissipate energy at
all. At lower values ofr, the shape does no more permit a
pure rotational flow inside the vesicle and dissipation occurs.
From expression9) we can expect the following depen-
dence for the internal dissipation:

ax,
. . “[ == =0.747

2 1 " 1 2 1 " 1 " 1 2 1

FIG. 6. Dissipation field around the vesicle fer=0.91 and, 0']2 4 6 8 10 12 14

from right to left and top to bottonr,=2, 4, 6, and 7.8, close 1Q

(e/R=0.068. White areas are places where dissipation is maximal. FIG. 8. Tank-treading velocity as a function of the viscosity
The line indicates the=0 isocontour of the AF. ratio for various values of.
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where vy is the tank-treading velocity, which defines the
velocity scale andr is an exponent which should be close to  FG. 11. Global dissipation rate as a function of the viscosity
unity at low values of * 7. The variations of the internal (atjo.

dissipation are presented in Fig. 7, and we can observe the

presence of a maximum. This maximum is in fact an artifi-ye|ocity vanishes. We can observe that the external dissipa-
cial effect due to the normalization by,. The internal tjon decreases when the vesicle becomes more elon(geed
dissipation rate is in fact proportional tg,, and the maxi-  creasing values of) and when the viscosity ratio increases,
mum results from a competition between growing values of jn poth cases the equilibrium angtedecreases.
and a corresponding decrease of the tank-treading velocity The total dissipation in the system is plotted in Fig. 11
(see Fig. 8 A normalization byz;, would have given mono-  and is very similar to the external dissipation presented in
tonic decreasing curvedlike vy). Amazingly, the tank- Fig. 10, which is the leading contribution. Amazingly, the
treading velocity seems to reach a minimum at the transitiong|opal dissipation seems to exhibit a minimum close to the
To check the validity of relatiof10), in Fig. 9 we present tymbling transition. But it is difficult to make conclusion,
a logarithmic plot ofEin/(ryvﬁ) as a function of 7 for  since numerical uncertainties are amplified close to the tran-
eight different values of the viscosity ratio, and we can sessition point.
that they nicely superimpose on a master straight line of Above the critical viscosity ratio no stationary angle ex-
slope «=0.9. ists, as predicted by Keller and Skalak, rather, a tumbling
The external dissipation rate is presented in Fig. 10. Firstmotion occurs according to the motion 1&8). This equation
as already mentioned, the external dissipation is larger thais remarkably well satisfied, as shown in Fig. 12, even
the dissipation inside the vesicle. Indeed the external dissithough the reduced surfaee=0.747 corresponds to a region
pation is dominated by the shear itself, and is thus, strictlywhere the KS theory should become quantitatively insuffi-
speaking, infinite. To analyze the contribution due to thecient (although qualitatively quite gogd
vesicle we have subtracted the shear part and considered This figure shows that the tumbling motion is not a regu-
Eout=Eout— 7outy’L2, L is the length of the resolution box. lar rotation (the density of points, sampled at a fixed fre-
Even with this prescription, the contribution of the vesicle quency, is not constantespecially close to the transition,
remains larger outside than insi¢e factor of 10. A scaling  rather, the tumbling motion is slow arourd=0 and is fast
law is, however, more difficult to obtain since dissipationfor §==/2. We can also see that the predicted KS value
outside the vesicle does not cancel when the tank-treading — y/2 is well reproduced here. Superimposed to the tum-
bling, i.e. the rotation of the main axis, remains a tank-

10 , : _ : , : treading motion. Tank treading can be studied by computing
oF — T T T T T T T
> ® B do/di=A+Beos20)| F
— Fit: t=A-+Bcos &
= 8 1 -0.05 ;
£ L , i = A=-0.494 y
3 7 N =
& N - 1=0. < 0.1F B=0.474y i
SNl e 1=0.848 g
N 1=0.795| ] —0747]
---1=0.747 015+ 1=0.747 |
5 N | . 1 N 1 r=8
0 5 10 15
iy
. N 0% 02 04 _ 06 08 1
FIG. 10. External vesicular dissipation rate as a function of the ’ " om
viscosity ratio. The contribution of the external shear has been sub-
tracted. FIG. 12. Test of the dynamical equation fér

011906-6



STEADY TO UNSTEADY DYNAMICS OF AVESICLE IN . .. PHYSICAL REVIEW E69, 011906 (2004

1=0.747, viscosity ratio=8.0 1=0.747, viscosity ratio=8.0, angle=84"
0.2 T T T T T T v T v -0.13 T
1% f L
01F % S -0.14
o [e]
m © °
= ok o © g ¥
= . o %015
° (e}
0.1+ o o . -0.16
o ©
0% 02 04 06 08 1 -0.175 ' 05 ' 1
o/r curvilinear coordinate s/P
FIG. 13. Residual tank-treading velocity in the tumbling frame. g, 15. Tank-treading velocity along the membrane der84

the velocity field along the membrane in the tumbling frame.degrees'

A variation of the tank-treading velocity is presented in Fig. It is then not a surprise if the variation of the tank-
13, where we observe the oscillatory behavior predicted byreading velocity along the contour is much more important
Keller and Skalak. in the second cas€@0% in amplitude than in the first one

In this figure positive values af;; correspond to a clock- (3%). The variation was only 1% in the steady tank-treading
wise tank treading while negative values to an anticlockwisgegime(see Fig. 16
rotation, which means opposite to the tumbling motion. Tank As for the tank-treading case, dissipation can be analyzed
treading cancels fos==/4 and 37/4. This oscillatory mo- inside and outside the vesicle during its rotation. In Fig. 17
tion is well described in the paper by Keller and Skalak, sove show the variations of the internal dissipation rate as a
we will not enter into details here; we simply mention that function of the instantaneous orientation of the vesicle. Not

this residual tank-treading velocity is five times smaller thanSUrprisingly, dissipation is maximized when the modulus of
in the pure tank-treading regime. Since the motion is nowthe tank-treading velocity reaches its maximum, i.e., when

unsteady we expect transient effects to be important, Thd- 0 @ndm/2. Figure 18 shows the corresponding variation

relaxation of the elastic constraints that applies on the men2 the external dissipation, and we can see that internal and
xternal dissipation vary in opposite phase.

brane are not instantaneous either in nature or in S|mulat|on§. Although the variation of the internal dissipation is di-

A basic test is to analyze the variation of the tank'treadmgrectly related to tank-treading, the external dissipation is

velocity along the contour of the vesicle. A perfectly NEX" more complicated since both tank-treading, tumbling and ex-

: R OCYuded volume effects play a role. The complementarity of
along the contour. For our weakly extensible situation this She internal and external dissipation is then not complete

not mdeeq the case, and to q.uant|fy the variations O.f th_ hich is illustrated by the variation of the global dissipation
tank-treading velocity we consider two extreme situations;

. . . “(see Fig. 19 As in the tank-treading regime, the internal
020. (Fig. 14, which corresponds to a very .SlO.W t“”.‘b"”g dissipat?on is only a fraction of the t%talgdissipation due to
motion (we are close to the tumbling transitiom which e vesicle(10%)
case the tension of the membrane is expected to be Wetlli1 '
equilibrated; anth=x/2 (Flg 13, which is the worse situa- IV. CONEINEMENT EFEECTS
tion for the membrane since the tumbling motion is very fast
at that point of the trajectory and the tension of the mem- In order to tend towards a more realistic description of the
brane has little time to relax. tank treading-tumbling transition, it appears necessary to

1=0.747, viscosity ratio=8.0, angle=0.5" =0.908, viscosity ratio=7.0
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b oooo g o SN o
o o o fo) e 2]
0.156 -°o ° 7 0.276 © o ° 7
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FIG. 14. Tank treading velocity along the membrane §e10.5 FIG. 16. Variation of the tank-treading velocity along the mem-
degrees. brane in the tank-treading regime.
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FIG. 17. Internal dissipation rate as a functionéof FIG. 19. Global dissipation rate as a functionéof

I_ratio increases rapidly when the distance between the plates
is. reduced. It reaches even twice the bulk value when the
Istance between the plates is of the order of seven times the

modify slightly the system. We considered the highly idea
ized case of an isolated vesicle submitted to a constant she
flow, but in practice we have to take into account the con- . . e .
finement effects, simply because this corresponds to the e fiective radiusR, which is npt that_a strong confmement.
perimental situation. The rheology of blood in capillaries, for, he extrapolated bulk value is obtalneq t0|”Qe=.5.5 Wh'Ch.
example, exhibits features directly related to confinement!> V€Y close to the valuec_=_5.4 obtained with periodic
the apparent viscosity depends of the vessel diameter; this %unda_ry C(_)ndltlonsbut no r|g|_d walls at Fhe boundarDe_as .
the so-called Farhaeus-Lindquist effect. We wiill, however 3"OWN 1N Fig. 26. The fransition curve is presented in Fig.
not consider here the geometry of a capillary tube, since thel: obtained as explalne_d above. The lower curve corre-
flow in such situations is quadrati®oiseuille flow. This sponds to an isolated vesicle, and the upper one to a vesicle

type of flow is known to induce lift forces on vesicles or re
tube. On the axis of the tube however. shear cancels Thl%osity ratio is sensitively increased in the case of the nonva-
geometry is then not very appropriate to investigate sheapishing confinement. It is not a surprise in itself because of

effects. Rather, we will confine the vesicle between tWOthe increase of the dissipation between the vesicle and the

plates, each of them moving in opposite directions. To elimiPlates. The energy needed for the vesicle to tumble is in a

nate drifts due to the lift forcgl9] the vesicle is placed at the sort dissipated. — . .
center of the cell. Since the plates move in opposite direc. ©Of COUrse, a further quantitative analysis of the dissipa-

tions, a shear remains at that point controlled by the relativ&lon IS required in this geometry, but a strong dependence of

velocity of the plates. This geometry can easily be incorpotl® eology of such a binary system under confinement can

rated in the AF method: we just have to introduce a no-sligP® €xPected at this level.
boundary condition on the plates located at the top and the

bottom of the resolution box. The top and bottom boundary V. DISCUSSION
conditions now correspond to a cancellation of the flow in-
duced by the vesicléhe total velocity field minus the im-
posed shear floy whereas we previously considered peri-
odic boundary conditions for this component of the flow.

The KS theory seems to provide an accurate description
of the physics involved in the dynamics of vesicles in a shear
flow. We checked that the theory is qualitatively excellent,
and gives quite good quantitative predictions for vesicles in

In Fig. 20 we plot the critical viscosity ratio as a function two dimensions. A 3D numerical calculatiéwith no viscos-
of the confinemenR/L, whereL is the distance between the . ; : : .
ity contrasj [20] regarding the pure tank-treading motion

shearing plates. We can observe that the critical viscosity

12 T T T T T T T T T
T T T T
oo 11} | ® Numerical results
12 OO ° 1=0.8 ° 4 — Power law fit, extrapolated value: r =5.5
o r=8 © o ]
™
o [} o 9 -
GF:TS 10F o o 4
= o o o 8 ]
~ e} o 7 u
3 o o %
=gk S . p ]
g o 5k 4
64 R 1 N 1 O. 1 . I R 4 I . 1 L 1 L 1 . )
0 0.2 0.4 0.6 0.8 1 0.06 0.08 0.1 0.12 0.14
o/n Confinement (R/L)
FIG. 18. External dissipation rate as a functionfofThe shear FIG. 20. Variation ofr. as a function of the confinement. Here
contribution has been subtracted. =0.8.
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' ' ' ' IS since the membrane has a shear modulus, which again de-
sk (8 E’;‘;?%’,fi:i:ﬁﬁ?{“,ﬁ‘i g’llg';’e fines a relaxation scale. Account of these various relaxation
: scales lead to quite complex behaviors, as illustratdd 4
. o Reducing the complexity motivated our simplistic approach
10k . 4 where time scales are included progressively. A study of ex-
o tensible membranes is currently in progress. Introduction of
o B ] the full complexity does not affect the overall picture of the
sta 8 8 ° 1 tank-treading to tumbling transition. The transition is simply
more progressive, oscillations have indeed been observed in
its neighborhood that rends the experimental or numerical
075 08 08 09 09 analysis more difficult. The vesicle model presents, on the
T contrary, a sharp transition, and thus confinement effects, or
FIG. 21. Here we plot the tank-treading to tumbling transition collective eﬁeCtS_ if several Y?Sic!es interact ca_n be !nter-
curve for a confinemer®R/L=0.13 and the extrapolated bulk tran- Préted more easily. The transition itself has been investigated
sition curve. in this article on the basis of a dissipation analysis. This
analysis reveals that most of the dissipation occurs outside

arrived to the same conclusion for this motion. This result ihe vesicle, the flow inside the vesicle rotates in quasi-solid
not fully intuitive, since the theory does not incorporate theManner and does not generate a significant shear. This point
physics of the membrane itsdthe shape is assumed to be IS important since it indicates that a non-linear behavior of
ellipsoida). We could check numerically that in the free the encapsulated fluid will probably not affect too much the
boundary problem the curvature deformabili§, of the results. Viscoelasticity will, on the contrary, define new time
vesicle does not play a key role, at least in thg regiie scales which will compete with all the other times scales of
<1 corresponding to a weak deformability. Indeed, the mairfl€ System, as previously discussed. We thus expect vis-
physical ingredients in this problem seem to be the geometrf—’oelasuc behaylors _o_f the encapsullated fluid to bg more vis-
cal constraints of fixed perimeter and afsarface and vol- 1Ple than non-linearitiesthe study is, however, still to be
ume in three dimensiohscaptured by the KS theory. Inter- done_. On the same ground, a precise o_lescr|pt|on of the flow
estingly, these properties are common to vesicles and re@Uiside the vesicle seems to be more important than the de-
blood cells, which may explain the observed similarities be-SCription inside, and this may be the reason why the KS
tween red blood cells and vesicles in a shear flow. But thdh€0ry works so well: it is based on Jeffery's analytic solu-
comparison is not complete, and several features of the re¢Pn for rigid ellipsoids outside the particle. The tank-
blood cell motions are not accounted for by a simple vesicldr€@ding motion being introduced in an approximate way, it
model. As an example, the shear rate only defines a timdoes not strictly satisfy the local inextensibility of the mem-
scale in the KS theory; it simply appears as a prefactor iPrane, which affects the flow insidé is the main compo-
dynamical quantities and can therefore be eliminated by redl€n? much more than outsidét is only part of the flow.
caling time. As a consequence, the transition threshold doeh€ tumbling motion is simply a global rotation. This dissi-
not depend on the shear rate, which is not fully the case fopation analysis also shows several intriguing features: The
red blood cells. We can then conclude that other time scalg9t@! dissipation decreases as we approach the fransition
should play a role in the dynamics of red blood cells, andVhere it seems to be miniméhe derivative cancelsin the

that the dependence of the transition in the shear rate shoufdMPpling regime dissipation oscillates, the internal and exter-
come from a competition between the forced time seale Nal dissipation are out of phase, which expresses an ex-
and internal time scales of the cell. These internal time scale€ange between the tumbling motidarge dissipation out-
also exist for vesiclestgyape= 7R/ « is the relaxation time side, low dissipation insideand the tank-treading motion

of the shape at fixed perimet@urface in three dimensiops ~ |oW dissipation outside, large dissipation inside/e could
andC, expresses precisely the competition between the ddnen expect the oscillations to compensate, but this is not the
forma?ion imposed to the vesicle by the shear flow and th&aS€ Since the amplitude of the external oscillations is much
relaxation of the shape due to the curvature energy. Howevef@r9er than the internal ones. The internal dissipation is in-
we have seen that the dependenc€inis very weak in the deed directly related to the residual tank-treading motion in
low deformability regime. The situation may change in theth€ tumbling regime, and is therefore very smai, s five

large deformability regime, but we have not yet investigateotime smaller in the tumbling regime than in the tank-treading

this regime. A second internal time scale appears in our forr€9ime for the parameters we have consider@dissipation

mulation due to our prescription for the Lagrange's Ioaram_analysis would be also interesting in confined situations

eter field: the membrane is not strictly inextensible. ExtensiVNeré we observe a strong effect of the confinement on the

bility introduces a new relaxation time scale, associated td/ansition location: confinement favors the tank-treading re-
the perimetefor the surface in three dimensionshich we gime. The rheplqglcal consequences have not _yet been inves-
chose very small compared tg,,peand v~ (of the order of tigated, but this is certainly a problem to consider.

107%) so that the constraint is almost instantaneously satis-
fied. We could, however, consider more deformable entities
and expect a shear dependence of the results in this case. At We have presented a numerical study of the tank-treading
least another time scale enters into play for red blood cello tumbling transition in vesicular systems, based on the Hel-

VI. CONCLUSION
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frich formulation, and compared our results to the KS theoryfluid. The boundary between these two domains will corre-
We have first compared the newly proposed AF method t@pond to the membrane forming the vesicle. Let us first con-
the boundary integral formulation, and have shown that theider an homogeneous fluid with generic viscosjtffowing

AF formulation can provide quantitative results when finitein a generic domaif). We assume moreover that the fluid is
size effects and the sharp interface limit are considered. Aubjected to a force fielf(r) defined inQ. In the Stokes
comparison of our results with the KS theory shows thatiimit, the flow is obtained by solving the Stokes equation for
although slight quantitative discrepancies exist, the KSncompressible Newtonian fluids:

theory represents a very good framework for the investiga-

tion of the dynamics of a single vesicle in a shear flow. In the nAv—Vp+f=0,
low deformability regimeC,<1 the boundary integral for- 3 (A1)
mulation shows that indeed the results are independet. of V-v=0.

which is a basic assumption in the KS theory. An analysis oty .sa equations have to be supplemented by appropriate
the dissipation in the system shows that the main Comribuboundar)?conditions at the edge oFf)it)he integratio)r/1 dgr%)aia

tion (once the shear contnpunon has _been rgmMmﬂnes The derivation of both the integral equations together with
from the external flow; the internal fluid rotation represents

only 10% of the dissipation. In the tumbling regime we ob-the Green’s functions have been discussed at length in Ref.

o T ) i 22], so we shall just briefly recall the main steps, and em-
Serve o§C|IIat|ons of the d'ss'pﬁ“o_”’ V\."th an opposite phas hasize on how a viscosity contrast must be incorporated. If
for the internal and extern_al d|SS|pat|0n, |ndlcat|ng an €Xx-) is the full space, and boundary conditions at infinity are
change between the tumbling motion and the residual tan§_ 4 41 no surface force apply at infinity, we can expect
treading. F|r_1§1IIy, we have analyzed th?. conflnem_ent ?ﬁegtﬁnear relations between the velocity field (the pressure
on the transition and shown that the critical transition Ime iStiald p) and the force field of the forms
strongly shifted by the confineme(egven when the box size
is five times larger than the vesigléNe believe that this _
effect should have strong consequences on the rheological nVo(r)If G(r—r")f(r")dr’,
properties of the medium. @

There are several features which have not been discussed

here, since our first focus was to make the presentation as pOZJ q(r—r")-f(r")dr’.
simple as possible. First, we have treated the two monolayers Q
as forming a single entity; that is, we did not account for a . . )
relative sliding between the two monolayéd]. If the dis-  Insertion of these expressions into the Stokes equafdn
sipation associated with the relative motion becomes compdeads to the equation for the Green ten€oand the Green
rable to that in the bulk, we expect this to affect the tumblingvectorq:
transition. Most important is that we have confined our study

to 2D vesicles, and this assumption must be relaxed in the IGit—diq=—8(r—r') &,
future if one whishes to have a more quantitative comparison _
with experiments. Several other ingredients must then be in- HGik=0,

corporated such as the spontaneous curvature and the area o —
difference between the two monolayers, two ingredients thaf/here indices, |, andk stand for the components & and
have proven to be essential in describing the equilibriunfl 20ng thex,y, andz axes;d; is a derivation along theaxis,
shapes of vesicles. We have developed an AF approach _ﬁ‘pd a summation over repeated indi¢Emstein convention
three dimensions, and it turns out that speeding up the coms @ssumed. When surface forces apply at the e€ef the
putation efficiency is imperative before performing a system{ntégration domairf) or the velocity field does not cancel,

atic quantitative study. This question is under consideration€xtra contributions appear, and the generic expression for the
velocity field is

ACKNOWLEDGMENT —
n(S(r,Q)v(r)=J’ G(r—r")f(r")dr’
This work received a support from the “Institut de Phy- Q
sique de la Matiee Condens& (IPMC, Grenoble, Frange

+J’ E(r—r')fs(r’)dr’
a0
APPENDIX A: BOUNDARY INTEGRAL METHOD

The boundary integral method is the traditional technique + nJ v(r')-K(r=r")-a(r")dr’,
used to solve classical hydrodynamical problems in the o
Stokes limit. The method is based on the resolution of the (A2)
Stokes equation§2) using the Green function’s formalism.
Since we consider a two-fluid problem, the internal fluid wherefs are the surface forces at the boundary, arid the
with viscosity 7;, and the external fluid with viscosity,,,, ~ hormal vector at the boundary pointing outs@de5(r () is
it is interesting to separate the integration domain into twonity whenr is located inside(}, and half wherr is at the
subspacedl;,, the internal medium, anf,,, the external boundary and zero outsidi.is a third order tensor. The two
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first contributions account for the external volume and sur- 5+ 5,

face forces applying on the fluid located éhwhile the last Tvmen{r)
term accounts for a non-vanishing velocity field at the bor-
der. Expressions fo andK in three dimensions a2 - , N
P 2] = | G ek 4 (0 )
jD:i Xin'Xk B
K am %] )K= )88 b mganea:
mem
co_ L ( i X_§J> (A4)
T8 x° )
W where A is now the normal vector pointing outside the
H forr —r is th | & The 2D vesicle. _ _
ere x stands for —r’ andx is the modulus o © The membrane forcé, ., is deduced from the Helfrich

expression for these tensors can be obtained by integratiq

along thez axis: ree energy

K
1 XXXy EH:f —c?+{(s){ds
= — mem 2
ijk T 4

c is the local curvature of the shape and the factis the
Lagrangian parameter which ensures a constant perimeter for
the vesicle. Note that both the inner and the outer fluids are
supposed to be incompressible. A second Lagrangian param-
eter to ensure a constant surface for the vesicle is thus use-
less in our case. The membrane force is derived from the free
fenergy by the equation

. 1 Xi X
GﬁDZE — &, log(x) + #

Care must be taker23] while integratingG since a logarith-
mic divergence occurs; a cutoff in thedirection can be
introduced which does not play any role when the integral o
the external forces applied on the system vanigties situ- SE,,
ation here. fmnem= — T
The generic equatiofA2) can now be applied to the ex-
ternal and internal media forming the vesidg,,; and(};, .

In two dimensiong 19
In the absence of external forces, the velocity field at the 419

membrane can be written from EG\2): d?c 2 ‘.
fmem=—/<(@+§n +d_St+C§n (AS)
P Vmen(1) = f G(r—r)fJ(r")dr’ N .
mem wheret is the tangent vector at the membrangf) form a
direct ortho-normal basis, amds defined b)df/d s=+ch, s
+ nmf v(r')-K(r=r")-a"(r")dr’ is the curvilinear coordinate. The first two terms are curva-
mem ture forces. The third term describes the adjustable force nec-

essary to ensure a constant perimeter, and can be interpreted
— Ul s s as a Marangoni effect. The fourth term is the well-known
Vmen( )= G(r —r)fsT(r)dr Laplace force. This force stemes from the pressure difference
linked to curvature effects on both sides of the membrane.
Fout The numerical procedure is simple: from the shape of the
J”7outf v(r')-K(r=r")-A°(r")dr’ vesicle we can compute the membrane fofgg,. The
knowledge off,en allows us to get the expression of the
= L AoUt s s velocity field at the membrane interface thanks to the integral
+ 77outf_ () -K(r=r") - A%E(r)dr, formulation (A4) and thus to predict its motion. The basic
infinity . d .
numerical strategy was described in R&3].

77out

(A3)
o APPENDIX B: ADVECTED-FIELD APPROACH

where “ment denotes the membrane andnfinity” the con-
tour at infinity, f" and f 2" are the surface forces applied 1. Definitions
respectively to the internal and external fluid at the mem-  Alternatively, Egs.(6) can be modified to derive a more
brane, this force is due to the membrane, and therefgre ~flexible scheme which applies to various physical situations

+fU=f_.m The last term in the second equation of Egs.(boundary conditions or complex non-Newtonian flids
(A3) accounts for the externally applied flo@hear in the The idea is to replace the so-called “sharp interface” prob-
present situation Summation of these two expressions leadsem presented above by a smooth interfEtd. The vesicle
to is now described by an advected-field which goes
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smoothly from—1 to +1 while crossing the membranel  The curvature field can easily be expressed in terms of the
will for example represent the internal part of the vesicle andAF if we define the normal vector field and the tangential
+1 the external fluid, the membrane being located at thgector fieldt as

zeros of the AF. Obviously we must recover the “sharp in-

terface” description when the width of the “smooth inter- Vo

face” goes to zero. This limit is called the “sharp interface n= w

limit” and will be presented in a forthcoming publication. A

simple way to produce a field going from1 to +1 with a -~

typical interfacial sizee is to consider the following func- t=nxz (BS)

tional:
Here z is the unit vector normal to the 2D plane. This defi-

1 - €2 ) nition corresponds to the choice
Eintrinsic[¢]:fded Z(l_d)) +E(V¢) -
dt
B1) o= (B6)
This functional corresponds to the simplest Landau-Ginzburg
description of a binary interface, the square-gradient theonyn curvilinear coordinates. One can easily check that the cur-
Minimization of this functional in the special case of a flat vature field satisfies
interface leads to the following interfacial profile:
c=—-V-A. (B7)
¢(r)=tanhr/ev2), (B2)
¢ is a more complex field which cannot be expressed as a
wherer is the coordinate in the normal direction, with the simple functional of¢ (it is history dependent, as we will
convention thatr=0 at the interface. We have explicitly seg.

used the boundary conditiong(+«)=*1 and ¢'(*x)

=0. When the interface is curved, however, the Laplace

force contained in EqB1) induces a curvature dependence ) o )

of the shape. Elimination of this force is thus necessary to T0 obtain an explicit expression for the external fofcg

keep the hyperbolic tangent sha(B®), and to suppress spu- it is necessary to differentiate the configurational energy

rious relaxations, as will be discussed later. Econtig With respect to the local position of the membrane. A
To obtain the full energy functional of the vesicle within local displacement of the membrane by a veciBr corre-

the AF approach, we have to generalize what we called thgponds to the transformatiog(r)— ¢(r—6R) [e.g., {(r)

configurational energyE) in Appendix A. To this end, we —{(r—9JR)]. As a result,

need to introduce a coordinate perpendicular to the mem-

brane(r) and rewrite the integrals along the membrane in the o — —V$=—|V|A=—252P1)f,

2. Expression of the force

following way: oR

f ds_>f dsj drssharqr), ﬁ=—Vg. (B8)

oR
where 5°"3Pqr) is the “shape function” of the membrane From these expressions we can easily see that all contribu-
which should reduce to a Dirac distribution centered on theions to the total energlg having a functional dependence in
membrane in the sharp interface limit. From its definition ¢ will give rise to normal forces, as a result, the only con-
o%"aPqr) must satisfy the normalization condition tribution that leading to a tangential force is theerm. Since
fdrsshaPqr)=1. A convenient choice for this function is, in the derivation of the force is a bit tediogsee Appendix D
Cartesian coordinates, we simply write down the final expression here:

|V ¢
5Shaplir)= — (B3) Feonfig= 2

c ..
—K[—-H-V(t-VC)

ﬁ+§cﬁ+f-V§f} 59harqr),

(B9)
which satisfies the normalization condition since the ad-
vected field goes from-1 to 1 while crossing the membrane. Which is to be compared to its analdg5) in the sharp
Here,r denotes the current position in Cartesian coordinategnterface limit[19], with prescription(B6) for the curvature:
Expression(4) of the configurational energy can then be eas- s o
ily extended as follows: - dc
2 ds

Fconfig:fmem: —K

A+ “+d§A B10
i+ ch d—St,( )

K V4l V4l
Econfigzij J dxdy¢ 2 +J J dxdyl——. wheresis the curvilinear coordinate. From these two expres-
(B4) sions we can note that V is the natural extension af/ds.
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3. Final equations counterterm, the vesicle would simply disappear to minimize

. 2 . .
Velocity field ExpressionB9) allows to calculate explic- Eintrinsic - Since terms of ordee” remain, drifts can be ob-
itly the local forcef,,, acting on the velocity field for a given Se€rved after a while, but since in most numerical implemen-

configuration of the AF¢(r). The Stokes equation can be tations the grid spacing is of the order ofe, and the usual
solved using a relaxation scheme: discretization of the differential operators is of ordeér it is

in practice useless to go beyordThe key point is then to
ov T adjust the value ok, such that the drifts remain negligible
€ =V [n(Vv+VVv)]=VP+fey,  (B1D)  while the numerical scheme remains stable. In practigés
of the order of unity. Although the counterterm cancels the
wheree, is a density scale which is related to the relaxationfirst order ine in the AF equation, corrections of ordemre
time (and thus defines an effective Reynolds numband  still present in the velocity equation, and thus linear depen-
fexi=Fcontig @S given by expressiofB9). The pressure field dences of the results ia can be expected in general. But

must be adjusted to ensure incompressibility: these corrections only affect the results in a quantitative way
as we will see below.
V.v=0. Lagrange’s parameter fieldThe last equation concerns

) . ) ) the Lagrange’s parameter fielfithat appears in the force

When a viscosity contrast exists between the fluid enclosedggqciated to the constraint of fixed local length of the mem-
into the vesicle and the external fluig),is position depen-  anersee Eq(B10)]. Unfortunately the functional relation
dent. A simple prescription for is o sety=7,u(1+ $)/2  petween the perimeter ards not known explicitly. We will
+7in(1—¢)/2 which guarantee a continuous variation of then yse a prescription based on a physical interpretation of
viscosity while crossing the membrane. We used this prez namely that this field corresponds to a local tension of the
scription here. _ _ membrane. In a linear response theory we can assume that

Advected fieldThe dynamical equation for the AF can be this tension is proportional to the local extension of the
derived from the condition =V which specifies that the  memprane. From this interpretation, we postulate a phenom-
membrane is simply advected by the flow. Pure advection i%nological equation fot:
unfortunately not numerically stable with ordinary numerical
schemes, and it does not guarantee that the final shape of the d¢ L
AF minimizes the energy function@B1). To cure this prob- qi —V-V{+Tt-(t-V)yv, (B13)
lem, we can write the following dynamical equation:

ae SEintrinsic , whereT is a “tension” constantenergy per unit surfagend
="V Votey _5—¢+C€ Vel t-(t-V)v simply represents- av/ds in the sharp interface
(812  limit (sis then the curvilinear coordingtevhich is nothing
but the local extension rate of the membrane. With this pre-
where we recognize the advection contributien-V¢ and  scription,{ is proportional to the local extension of the mem-
the restoring force- 8E; i insic/ 0. Note the presence of an brane.
additional termgce?|V ¢|, as suggested by Fola al.[24],
that plays a very important role in the AF method. To under-
stand the role of this counter-term, it is interesting to write

the dynamical equation in a more explicit way, using the ~Both the advected field(r), the velocity fieldv(r) and
prescription(B1) for the functional: the tension field{(r) are discretized on a square lattice of

sizeN, XN, whereN, andN, are taken of the order of 300,
ip ) 5 and the differential operators are discretized on this lattice
ot —V-Vtey(d(1-¢°) +e(Ad+cV)). using algorithms of order two cylindrically symmetric. Ro-

tational symmetry is very important in this problem, and care
We show in Appendix E that in the sharp interface limit has been taken to ensure it. Tests with the more symmetric
(e—0), using the dimensionless rescaled variabie=r/e, hexagonal lattice have been performed providing the same
the combinationA ¢+c|V ¢| simply reduces ta??¢/or*?  results. From an initial configuration f(r), v(r), and{(r) it
+ O(€?). The steady AF profile across the interface reducess possible to compute their time evolution by integration of
then, up to order?, to the profile of theplanar interface  the equations presented in the previous section using a fourth
(B2), and is thus not sensitive to the local curvature. Theorder Runge-Kutta solver. Periodic boundary conditions have
physical implication is that the lateral relaxation of the globalbeen used at the border of the simulation box ¢ér), {(r)
shape induced by the Laplace force due to the surface tensi@nd the velocity field induced by the vesidiee., the actual
of the Landau-Ginzburg theory has been suppregsieel velocity field minus the imposed external figldhese peri-
counterterm corresponds precisely to the opposite of thedic conditions on the relevant fields allowed for implicit
Laplace force, which can be checked by integrating thisalgorithms in Fourier space, of special interest for solving
counter term across the interface, with expres¢i8) for  the Stokes equation combined with the incompressibility
the shape functioph An important consequence, justifying constraint.
the name of the method, is that the AF is quasipassive: it is We have chosen the following system of units: the unit
simply transported by the flow, whereas in the absence of thkength isR= JS/7 whereSis the surface of the vesicl® is

4. Numerical procedure and parameters

011906-13
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then the typical radius of the vesicle which is of the order of LS——T——T——T—— 71—

R=10 um; the time unit is defined as the typical time for a SR

vesicle to relax to its equilibrium shageype= NoutRe! K; s i

the mass unit is fixed by setting =1. The physical dimen-

sionless control parameters are as follows. sk i
C = 7outYR¥ k= Ytsnape. the “curvature” number 0.
controlling the curvature deformability of the vesicle
in the external flow. A large value &, corresponds or T
to a large deformation. In practice we €£=0.5,
which corresponds to an intermediate regime. -0.51 —
Cr=n,uYRIT, the “tension” number that controls
the perimeter variation due the externalflow. A large -1 .
value of Ct means a large extensibility of the mem-
brane. Here we seCt to 10 2 on the contrary, to | M T T R T T
ensure the constraint of fixed perimeter. 15 -1 05 0 05 1 15
Su=Rc/C,.= €,x/ 75, R, the Suratman number, FIG. 22. Equilibrium shapes in two dimensions. Circles corre-

which represents the Reynolds number Re estimated spond to the AF method, while solid lines are the actual contours.
usingtspapeas the typical time scale. This number is
fixed to 10 2 in practice, since we work in the Stokes
regime. Smaller values have been tested, slowing

For swelling ratiosr larger than 0.9 the equilibrium shape is
reasonably well described by an ellipsis, as can be seen on
. . . = the figure; however, below that value the comparison be-
SSI\;VSn the computation speed without affecting the re comes poor. For<0.85, indeed, the shape can even become
) ) ] ) nonconvex(see Fig. 22 and the KS theory can be expected
r'=7in/ 7out, the viscosity contrast typically between o fajl in this region. A direct test of the theory requires the

1 and 10 here. application of an external shear flow, a situation that we con-
r=47S/P?, the swelling ratio in two dimension$ sider now.
is the internal area and P the perimgtdetween 0.7
and 1. 2. Vesicle in a shear flow
The technical parameters associated to the AF equations More interesting is the situation where a vesicle is sub-
or appearing in the numerical scheme are mitted to a shear flow. Such a situation is likely to occur
€ the interfacial width of typical value 0.085 when a vesicle flows in the neighborhood of a wall, a rela-
h the lattice spacinglx=dy=h=0.0R. tively common situation in practice due to sedimentation or
N. N th ber of arid points in a directi . confinement. The most basic shear flow to consider is the
x» Ny € number of grid points In a direction Vares |inear shear flow which is entirely determined by a single
from 200 to 500. parametery, the shear rate:
dt the time step is of the order of Iétshape,
ty=1le, the AF relaxation time is of the order of Ux=7Y,
O-Ztshape- vy=0.
APPENDIX C: TEST OF THE METHODS Placed in such a flow, a rigid elongated object is subjected to
o an angular momentum inducing its rotati@r tumbling mo-
1. Equilibrium shapes tion). However, a vesicle is not a rigid object and when the

When no external force is applied to a vesicle its shapénternal viscosity is identical to the viscosity of the external
relaxes to minimize the curvature energy with the constrainfluid it has been shown that the vesicle main axis reaches a
of a fixed perimete® and a surfaceS These equilibrium Stationary orientation which is a function of the swelling
shapes have been thoroughly investigated in two or three _— ellipsoidal shape
dimensions by several authors, and can be obtained in the — actual shape
sharp interface description by a direct integration of the -
minimization equation using a shooting method. In Fig. 22
we compare the results obtained with the advected field
method to the sharp interface description. In this figure
circles correspond to the isocontog=0 of the advected
field, and the solid line to the sharp interface data. We can
see that these two methods are in fairly good agreement,
whatever the value of the reduced surface4nS/P2. In
Fig. 22 the perimeter has been arbitrarily fixedRte 2. =098 7=0.91

Since the KS theory assumes a fixed ellipsoidal shape for
the vesicle, it is interesting to compare the actual equilibrium  FIG. 23. Comparison in two dimensions of the actual equilib-
shapes to ellipsis. Such a comparison is presented in Fig. 28um shapes with ellipsis.

1=0.85
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FIG. 24. Variation of6 as a function of the interfacial width

for 7=0.8,r =4, andC,=0.5. FIG. 25. # as a function of the inverse box size fer0.8, r

=4,C,=0.5, ande=0.03R.

due to the chosen periodic boundary conditions can be inves-
tigated as well by changing the resolution box dizé/aria-
tions of the orientation anglé, as functions of the inverse
box sizeR/L for e=0.03R and 7=0.8, are shown in Fig.
25. We observe that the equilibrium angléncreases with

ratio [16]. If 6 denotes the angle between thexis (shear
axis) and the main axis of the vesicleee Fig. 2, a quasi-
spherical shape would correspond fie-#/4. In general,
0<m/4. Although the global shape is stationary, it must be

noted that the membrane still circulates along the contouf, ., o« «i-e and thie— s variations thus partially compen-

like a tank treadsee Fig. 2 sate for thee—0 variations. We can then expect tle-0,

Interestingly, when the internal viscosity increases up tq_ﬁoo AF prediction for 6 to be of the order of 8.5 degrees

infinity a transition should occur between the pure tar?k'rather than 6.2 degrees for the boundary integral method.

™®ne should not wonder too much about this discrepancy,
since we are here in the vicinity of the critical angle0,
"where a small drift in the control parametdthe swelling

corresponding to a rigid body. We will use the notatiqrior
the critical viscosity ratio at which the transition occurs
\k/1vh|c.h é:orrdezponds tc:jyfleé:?ncella}[t.|or1lla)f§ucl:<h I:IJI transéltg)l? | atio for examplg can induce dramatic changes énInter-

as indeed been predicted theoretically by Keller an aia stingly, the critical viscosity ratio proves to be rather insen-
for red blood cells by assuming ellipsoidal shapes. However,

. . e . itive to the finite size effects. In Fig. 26 we plot the critical
one can easily see from Fig. 22 that in situations corresponcf; g P

. ; . . /iscosity ratio for7=0.8 as a function of the inverse box
ing to red blood cells in three dimensiofs-0.7) the shapes size, and we can see that up to the accuracy of our measure-

?re flz;\r firom erl]llﬂsmdal, ? C?trifu' c?ggntlgatéve gnarlly‘:\'l‘:‘] oi;tge ents(the size of the poinjsve do not observe a significant
[i%utr?atstheeAF efeedsiittailo{;s foratshe trgﬁsitioeneIOSat?on dif'fere volution ofr. To obtain the transition curve, we can then
P consider thee—0 limit only. The extrapolated transition

fioom%tgqe de tt?eory. d-;Tfi?)eR (_jr?lta vx;ere obtam(;:d for curve is presented in Fig. 5, wherg have been computed
o and a box siz& = - [Nese WO paramelers are, ¢, 14 yajues ofe and extrapolated to 0.

however, internal parameters of the resolution method, they The crosses correspond to a valeR=0.047 and the
are absent from the KS theory that considered a sharp intef; o< 10¢/R=0035. An extrapolation ta=0 provides the

Iﬁge g:‘e(je2nfbn;2:gens?g:%uar;g'r?]g Tvﬁ%ﬁrgllgﬁss?g;e; tgj(ié?émpty triangles that have to be compared to the results of the
’ boundary integral formulatiofthe filled triangles We can

account of the boundary conditions at infinity. It is then im- ;
portant to compare the AF predictions with the Green func-ObserVe a fairly good agreement between the extrapolated

tion formalism. Here we will analyze both the effect af AF values and th_e boundary integ_ra_l reference _results. This
and the finite éize effects due to the periodic boundary con(—:uwte SISO corXalns éhe II)(STpredlcnlorés ttr;?t W|Iltbi:hco'21|;
ditions used in the AF method. In Rf17] the finite size mented upon Appendix D. 10 conciude this part, the
effects were considered, assuming that it was the leading ' ' '
source of discrepancy in two dimensions, but the influence of g
e was not investigated. We will focus first on the influence of
e, and to this end consider the tank-treading regime, for
which we have a steady state. In Fig. 24 we plot the varia-
tions of 6 as a function ofe for 7=0.8. We can observe a se e o
quasilinear dependence 6fas a function ofe. An extrapo-

lation to e=0 leads to a valu#=6.94 degreesthe Green

function data are 6.2 degreesvhereas for a value o€ 4
=h, the minimal resolution, the AF value @&fis around 10
degrees, leading to a strong overestimation of the angle, and
therefore of the critical viscosity ratio, corresponding to
6=0 [16]. An extrapolation of the AF data te=0 is thus FIG. 26. Evolution of the critical viscosity ratio as a function of
necessary to obtain quantitative results. Finite size effectthe box size.

1 1 1
0.05 0.075 0.1 0.125 0.15
Inverse box size (R/L)
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method is a very good semiquantitative approach that can

provide accurate quantitative results if tke-0 andL— o
limit is carefully investigated. We will mainly use the bound-
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ary integral method to test the KS theory, and the AF method

to analyze the physical behaviors more qualitatively.

APPENDIX D: DERIVATION OF THE FORCES
1. Derivation of the curvature force

Since the curvature energy is a functionalépthe curva-
ture force is normal to the membrane and can be written

6ECUFU

o¢

The second equality results from E@8). The functional

OEcur, 00 .

56 R 5°MaPgr)A.

(D1)

Feurn=—

derivative ofE.,,, can be calculated as usual by doing the

transformationg— ¢+ 8¢, which gives

Enl 0 501= 5 | | 0t 5044V 59]

From the definitiorc= —V(V ¢/|V ¢|) we easily deduce, in
two dimensions
&
Vol )’

from which we obtain after some few integrations by part:

5czc(¢+5¢)—c(¢)=—v.[f(

|V¢>|

5ECUFU
o¢

:—%v — 1 V(2c|V¢|)} (D2)

To go further, we need to use an important specificity of the
advected field, namely that its isocontours are parallel in the

interfacial region. This property simply writé&-t=0. After

elementary algebra, using the vectorial identity W)t

=ch, one can easily obtain
V-(ch)=0,

which implies from definition(B7) of the curvature fielcc
that

A-Vc=c?,

and then the first term appearing in EB2) simply reduces
to — kc3/4.

To calculate the second term, one has to use the basj

property VIV =0, which implies, together witlV -t=0
t-V|Vg|=0
We then obtain the final expression

k(c® . .
Eth.V(t-vC)],

5ECUI‘U _

S 2

(D3)

which we can combine with expressi@gD1l) to obtain the
curvature contribution to the force:

2. Derivation of the Lagrange’s force

This force originates from the contribution of the
Lagranges parameter to the Hamiltonian of the membrane:

ELagranges ffdg

An elementary translation leads to the following variation:

PR PRLL PR

which, using Eq.(B8), leads to the final expression for the
force:

5ELagranges

__ (7 T a\ ssha
R =(t-Vt+czn)8°"ePr).

FLagranges: -

APPENDIX E: ROLE OF THE COUNTER TERM

The precise role of the counter-term can be understood if
we analyze the—O0 limit. If r ands denote respectively the
normal and the tangential coordinates, the gradient and La-
placian operators can be written

<9¢ 1 4.

1—cor Js

Vo=

’

Co do 1 P

¢ 9%
1—cgr or (1— cor)z7

A= G

N r dCq d¢p
(1—cor)® ds as’

wheref andt are the normal and tangent vectors, ag(k)

is the curvature of the zero isocontour of the &Rvhich has
been chosen as the origin of the normal coordinafe(r

=0,5)=0]. When e—0 the width of the interface vanishes
'o%nd it is therefore convenient to rescale the normal coordi-
nate r by introducing the dimensionless coordinaté
=r/e. The Laplacian then rewrites

(ED)

By definition of the normal vectaii=V ¢/|V ¢|, ¢ does not
vary in the tangential directiondg/ds=0) so that|V ¢|
=d¢lar=1ledplor*. Equation(EL1) can then be rewritten

011906-16
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25 4 O 2 2 2(A \Y :a2¢ O(e?
EAb= 5 Coe |V | +0(€). e (Ap+c|Vo|)= -5z +0(e),
An expansion of the curvature field er*,s) with respect to The role of the counterterm is then to cancel the curvature
e leads toc=cy+O(€), and we can then replacg by cin effects up to the second order & As a result, the steady
the previous expression. As a result, shape of the AF profile is the profile of a flat interface.
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