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Steady to unsteady dynamics of a vesicle in a flow
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We investigate the dynamics of a vesicle in a shear flow on the basis of the newly proposed advected field
~AF! method@T. Biben and C. Misbah, Eur. Phys. J. E67, 031908~2003!#. We also solve the same problem
with the boundary integral formulation for the sake of comparison. We find that the AF results presented
previously overestimated the tumbling threshold due to the finite size of the membrane, inherent to the AF
model. A comparison between the two methods shows that only in the sharp interface limit~extrapolating the
results to a vanishing width! the AF method leads to accurate quantitative results. We extensively investigate
the tank-treading to tumbling transition, and compare our numerical results to the theory of Keller and Skalak
which assumes a fixed ellipsoidal shape for the vesicle. We show that this theory describes correctly the two
regimes, at least in two dimensions, even for the quite elongated non-convex shapes corresponding to red blood
cells ~and therefore far from ellipsoidal!, This theory is, however, not fully quantitative. Finally we investigate
the effect of a confinement on the tank-treading to tumbling transition, and show that the tumbling regime
becomes unfavorable in a capillary vessel, which should have strong effects on blood rheology in confined
geometries.
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A vesicle is a closed phospholipid membrane, separa
an internal fluid from the external suspending medium. T
size of a vesicle can vary in quite a broad range from a
tens of nanometers, in which case they are called liposom
up to a hundred microns, where they are named g
vesicles. The shape of these vesicles strongly depends o
swelling ratiot, which expresses the volume/surface ratio
a dimensionless formt56ApV/S3/2, whereV denotes the
internal volume of the vesicle andS its area. While a spheri
cal shape corresponds tot51, t can vary in practice betwee
0 and 1, and give rise to a large variety of equilibrium sha
as studied after the seminal works by Canham, Helfrich,
Evans@1–3# by many authors since@4–8#. Among the vari-
ety of observed shapes is the oblate shape, for 0.59,t
,0.651, and the stomatocyte shape fort,0.592 ~after Ref.
@5#!, which coincide with the usual equilibrium shapes of r
blood cells. Since giant vesicles can be as large as 100mm,
their properties can be investigated using standard op
microscopy techniques, and constitute, therefore, in view
their conceptual simplicity, a theoretical and experimen
model system for blood flows. Of course there is no comm
point between a red blood cell and a vesicle from the b
logical point of view; a vesicle only contains phospholipid
a major ingredient of cell membranes, but has no biolog
function. Interestingly, it should be possible to incorpora
more complicated, and biologically relevant, ingredients l
proteins to the phospholipid membrane to selectively activ
some biochemical properties. Equivalently, the encapsul
fluid could be modified to mimic in a more realistic way th
internal medium of a red blood cell. It is, however, not o
purpose here to model the biological properties of a
blood cell. Rather we will focus on their mechanical prop
ties. Understanding blood rheology is a major issue for b
medical applications. At the macroscopic scale blood i
non-Newtonian fluid~see, e.g., Ref.@9#!, and a precise
knowledge of its flowing properties is necessary to und
1063-651X/2004/69~1!/011906~17!/$22.50 69 0119
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stand some pathologies, or to design artificial devices. S
blood properties are very sensitive to experimental con
tions, a special effort is made to find blood analogs, mimi
ing their rheological properties without the biological com
plications. At a more microscopic scale, blood is respons
for cell transport and can then play an active role in t
propagation of some pathologies, like cancer for exam
Mechanical models have then been suggested to describ
dynamic of a red blood cell in an external flow, like th
‘‘capsule’’ model, which aims at a quantitative description
red blood cell flows. These models include elastic proper
of the red blood cell membrane~see, e.g., Refs.@10–15#!.
Our scope here is different; instead of including all the r
evant physical ingredients necessary to derive a quantita
description of blood flows, which is certainly of very impo
tant practical interest, but unfortunately often shado
simple, but important physical mechanisms, we want to id
tify these elementary mechanisms by including a minimal
of physical ingredients on the contrary. More realistic mod
can then be constructed step by step, isolating the influe
of each physical ingredient at a time. From this point
view, a vesicle constitutes the ideal starting point for th
kind of approach, since its equilibrium properties depend
the swelling factort and the area difference between t
internal and external monolayers, and its dynamical prop
ties are controlled by a very small set of dimensionless nu
bers, two in the simplest approach and three when a visco
contrast between the encapsulated fluid and the external
dium is accounted for. In this paper we shall keep the ana
sis rather simple by disregarding the area difference betw
the monolayers, though we are aware of the importance
this ingredient with regard to equilibrium shapes. The k
simplification comes from the liquid nature of the membran
It shares the same inextensibility property with red blo
cell, which is certainly the reason for the success of t
naive model, but there is no shear modulus, in contrast w
©2004 The American Physical Society06-1
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red blood cells for which a weak shear modulus is revea
This is indeed a great simplification since accounting
shear elasticity raises the problem of the tensionless re
ence surface, which is unknown for red blood cells, a
strongly affects the results@15#. The vesicle model sup
presses this difficulty, rendering an interpretation of the
sults much simpler. Moreover, although very simplistic, t
vesicle model seems to be qualitatively, but also semiqu
titatively, quite reliable to describe the physical effects o
served in blood flows. In this paper we present a quantita
numerical study of the tank-treading to tumbling transition
vesicular systems, and show that the Keller-Skalak~KS!
theory @16#, based on fixed ellipsoidal shapes, correctly d
scribes the transition mechanism, even for highly nonel
soidal shapes in two dimensions. This transition betwee
steady regime and a nonsteady tumbling motion is indee
fundamental importance in blood since it strongly affects
rheological properties@9#. Moreover we show that a confine
ment of the vesicle between two rigid walls shifts the loc
tion of the transition, which should have consequences
the rheological properties of blood in capillary vessels.

In Sec. I we present the model, the parameters and
general equations. The numerical techniques we use
solve the hydrodynamic free boundary problem are prese
in Appendixes A, B and C, where we revisit the newly pr
posed advected field~AF! method@17#, and analyze the sen
sitivity of the method to internal parameters. In Sec. II w
compare the numerical results to the KS theory, and ana
the dissipation in Sec. III. Section IV is devoted to confin
ment, and a discussion with some open questions is
sented in Sec. V. Some technical calculations are relegate
the Appendixes.

I. MODEL AND EQUATIONS

A. Model

A vesicle is a closed phospholipid membrane as depic
in Fig. 1, ideally a bilayer, but sometimes a multilayer me
brane. Depending on temperature, and the chemical natu
the surfactants, the molecular organization of the membr
can be of the liquid type, or correspond to a crystal, or e
form a gel-like structure. At a mesoscopic scale, the m
chanical properties of the membrane can then vary from
two-dimensional liquid to an elastic solid. In any case,
extensibility of the membrane is very low, and it is usua
assumed to be inextensible; we will use this assumption h
The other possible in-plane deformation is a shear. If
membrane is purely liquid, as we will assume here, this d

FIG. 1. Schematic drawing of a vesicle.
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tortion does not cost any energy, whereas if the membran
elastic~as red blood cells are! it will store elastic energy. For
a liquid inextensible membrane, the only energetic contri
tion is then in out of plane deformations, which are ess
tially bending modes. Several models have been consid
for the membrane energy, starting from the simplest mo
suggested by Helfrich@2#,

EH5
k

2 E ~c11c2!2dS1
k̄

2 E c1c2dS, ~1!

wherec1 andc2 are the two main curvatures, in three dime
sions, at a given point of the membrane. The total curvat
c11c2 and the Gaussian curvaturec1c2 are the two geo-
metrical invariants characterizing the surface at a giv
point. Since curvatures are algebraic, and physical prope
of the membrane do not depend on the precise sign of th
quantities if the membrane is symmetrical, the energy sho
be quadratic. Integrals are calculated over the surface of
membrane.k and k̄ are the elastic moduli characterizing th
two possible deformation modes, and we have assumed
the membrane is homogeneous to extract them from the
tegrals. Thanks to the Gauss-Bonnet theorem the Gaus
contribution is a constant that only depends on the topolo
When the vesicle is not subjected to topological chan
~like budding for example! k̄ does not play any role. We wil
accordingly disregard the Gaussian contribution from the
ergy in the following. When minimizing the energy, the co
straint of local inextensibility of the membrane have to
accounted for, using for example a local Lagrange’s para
eterz(s,t) which is a function of the arclength~and of time
in dynamical regimes!:

E5EH1E z~s,t !dS.

A minimization of the total energy can be performed to co
pute the equilibrium shapes of the vesicle. Interestingly,
Helfrich formulation is scale invariant, which means that t
typical size of the vesicle does not play any role. The o
relevant parameter is the swelling ratiot56ApV/S3/2,
where V is the volume of the vesicle andS its area (t
54pS/P2 in two dimensions whereP is the perimeter of the
vesicle!. When a flow is applied, hydrodynamical quantiti
will enter into play, which will be considered now.

B. Hydrodynamical equations

Since the typical size of a vesicle is of the order of 10mm,
and typical shear rates applied to these vesicles are us
smaller than 10 Hz, the Reynolds number can be estimate
be of the order of 1023 in water. Inertial effects are then
negligible and the appropriate equation to describe the
drodynamic flow inside and outside the vesicle is the Sto
equation

“•s2“p1fext50, ~2!

wheres5h(“v1“vT) is the Newtonian stress tensor~no-
tation T denotes a transposition of the gradient velocity te
6-2
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STEADY TO UNSTEADY DYNAMICS OF A VESICLE IN . . . PHYSICAL REVIEW E69, 011906 ~2004!
sor!, h is the viscosity of the considered medium@for water
h51.031022 P at 20° C ~g cm21 s21!#, v is the velocity
field, p is the pressure field andfext is the local force exerted
by external objects, like the vesicle itself and eventually
substrate, on the fluid. Finally, the liquid is incompressib
for all practical purposes, entailing that:

“•v50. ~3!

The contribution of the vesicle to the external force can
derived from its configurational Hamiltonian

E5
k

2 E c2ds1E z~s!ds, ~4!

where we recognize the curvature energy~the first term! cor-
responding to the Helfrich theory@2#, c is the local curvature
of the membranec5c11c2 and s denotes the coordinate
along the membrane~the curvilinear coordinate along th
contour of the vesicle in two-dimensions!, k is the curvature
rigidity, and the second term expresses the constraint of fi
perimeter.z(s) is a local Lagrange’s parameter express
the absence of local dilatation of the membrane. The fo
field exerted by the vesicle on the flow is simply given
fext52dE/dR, wheredR is a local elementary translatio
of the membrane forming the vesicle.

The last prescription needed to derive the dynam
equations for the vesicle is the boundary condition for
velocity field at the membrane. The simplest prescript
compatible with the absence of permeation is to assume
the vesicle is purely advected~transported! by the flow,
which means that the local velocity of the membrane is
local velocity of the flow:

vmem5v. ~5!

The final set of equations is then

“•s2“p1fext50,

“•v50,

fext52
dE

dR
,

vmem5v. ~6!

These equations have to be solved numerically, and we
consider both the boundary integral method~Appendix A!
and the AF method~Appendix B!. A comparison between th
two methods is the subject of Appendix C. We will most
use the boundary integral method for quantitative comp
sons with the KS theory~Sec. II! and the AF method for
qualitative discussions~Sec. III!. We will now more specifi-
cally consider the two-dimensional~2D! geometry.

C. Relevant parameters

The first relevant parameter is the swelling ratiot that
controls the equilibrium shape of the vesicle. The relaxat
time of the shape of the vesicle is controlled by the viscos
01190
a

e

d

e

l
e
n
at

e

ill

i-

n
y

of the fluid; a typical relaxation time can be constructed
tshape5hR3/k, whereh is a viscosity. We take the viscosit
of the external fluid to define various quantities of physic
interest, and it will be denotedhout ~while h in refers to that
of the liquid inside the vesicle!. The typical temporal scale o
the shape evolution istshape5houtR

3/k, whereR is a length
scale which we will choose asR5AS/p in two dimensions,
the radius of the disk of the same area. Indeed, these de
tions based on dimensional considerations do only prov
orders of magnitude, as long as the viscosity ratio is not
large ~<10! the replacement ofh in by hout will not change
the overall picture. In the presence of a shear flow, the sh
rate g defines a time scale 1/g and therefore, combined to
tshape we can construct the dimensionless numberCk
5houtgR3/k which characterizes the deformability of th
vesicle under the hydrodynamic constraintg. The largerCk
is, the larger the deformation due to the flow. When allo
ance is made for a viscosity contrast between the inte
fluid and the suspending medium, the viscosity ratior
5h in /hout will also come into play. To summarize, the thre
relevant parameters in the problem are

t54pS/P2 in two dimensions,

Ck5houtgR3/k,

r 5h in /hout .

II. TEST OF THE KS THEORY

A shear flow can be viewed as the superposition of a p
rotational flow and an elongational flow which main elong
tion axis is oriented at 45 from the shear direction. That is
can write a simple shearv5(gy,0) as

v5Msr1Mar , ~7!

whereMs ~with componentsMs
xx5Ms

yy50 andMs
xy5Ms

yx

5g/2) is a traceless symmetric matrix~describing the strain-
ing of the vesicle alongp/4!, while Ma ~with components
Ma

xx5Ma
yy50 andMa

xy5g/2 andMa
yx52g/2) is a traceless

antisymmetric matrix, representing the rotational part of
flow.

When an object is placed in such a flow it experience
torque inducted by the rotational component of the veloc
field, and a torque due to the elongational part which tend
orient the particle at 45 from the shear direction. The res
ing motion of the particle depends on the competition b
tween these two components of the flow, and the gen
evolution equation for the orientationu of a particle is of the
form

du

dt
5A1B cos~2u!, ~8!

whereA andB are two coefficients characterizing the com
petition. Of course, all the complexity of the problem lies
the determination of these coefficients in a particular sit
tion, but Eq.~8! shows that basically two regimes are po
sible: whenuA/Bu,1 a steady state can exist, and the orie
6-3
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BEAUCOURT et al. PHYSICAL REVIEW E 69, 011906 ~2004!
tation is given by cos(2u)52A/B ~the tank-treading regime!,
and whenuA/Bu.1 the motion cannot be stationary and t
particle rotates in the flow~the tumbling regime!. Two
branches exist in the tank-treading regime correspondin
u56arccos(2A/B)/2. With the conventions of Fig. 2,u.0
corresponds to the stable branch whileu,0 is unstable. The
two branches meet atu50, which corresponds to the limit o
stability. WhenuA/Bu is varied from 0 to infinity, the orien-
tation u varies from 45 degrees to zero, reached foruA/Bu
51, and a transition to a tumbling motion occurs for larg
values. In the terminology of the bifurcation theory, this ki
of transition is called a saddle-node bifurcation. In their p
per, Keller and Skalak were able to derive expressions foA
andB on the basis of Jeffery’s work on rigid ellipsoids@18#,
and they applied their theory to the special case of red bl
cells. In view of the importance of this tank-treading to tum
bling transition for blood rheology, it seems interesting
compare this theory numerically to the full free bounda
resolution. Since the deformability of the particle is not tak
into account in the KS theory, we chose to consider the
gime Ck,1 which corresponds to weakly deformab
vesicles. We checked that in practice the precise value oCk
does not affect the results much, as shown in Fig. 3 fo

FIG. 2. schematic drawing of a tank-treading vesicle in a sim
shear flow.

FIG. 3. Orientation angle~in degrees! as a function of the vis-
cosity ratio fort50.8 and two values ofCk .
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swelling ratiot50.8. In this figure we plot the variations o
the equilibrium angleu as a function of the viscosity ratior
for two different values ofCk ~0.75 and 0.075!. We observe
a variation only close tor 51 which remains far away from
the transition. This lack of sensitivity is very interesting sin
it means that the constraints of fixed perimeter and area~sur-
face and volume in three dimensions! are playing the leading
role, and the precise value ofk, the curvature modulus, is no
very important in theCk,1 regime. This property is very
interesting from an experimental point of view, since usua
k is difficult to measure. The dynamical situation is th
quite similar to the equilibrium situation~no flow!, for which
k can rigorously be eliminated from the problem. The on
relevant parameters are thust and r, the viscosity ratio.
Close to the transition, the KS theory predicts a square r
dependence of the orientation angleu as a function ofr @A/B
is linear inr andu5arccos(2A/B)/2, once linearized around
2A/B;1 leads to a square root law#. This square root law is
represented in Fig. 3 and is seen to be fairly well reproduc
Indeed, an extrapolation tou50 of this square root fit is a
powerful way of measuring the critical viscosity ratior c .
The quantitative comparison with the KS theory exhib
some discrepancies, this theory tends to slightly undere
mate the critical viscosity ratior c . A more systematic study
is presented in Fig. 4, where we can see the variations of
main axis orientationu as a function of the viscosity ratio fo
various values of the reduced surfacet.

In this figure the dashed lines correspond to the KS the
in two dimensions, while the simulation data using the in
gral method are represented by the symbols. We can see
although the KS theory captures the generic scenario of
transition, still some quantitative discrepancies exist betw
the theory and the numerical results: the critical viscos
ratios are a bit underestimated by the theory. Interestin
the difference between the theory and the numerical d
does not seem to be very sensitive to the swelling ratiot,
although it could be expected to be larger for low values ot
for which the equilibrium shapes are far from ellipsoidal.
final comparison between the KS theory and the numer
free boundary resolution is seen in Fig. 5, where the
predictions forr c are confronted to both the AF results an
the boundary integral resolution. We basically observe
same trend as already mentioned. Amazingly, the free bou
ary numerical resolution in two dimensions seems to

e

FIG. 4. Orientation angle as a function of the viscosity ratio
various values of the swelling ratio.
6-4
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STEADY TO UNSTEADY DYNAMICS OF A VESICLE IN . . . PHYSICAL REVIEW E69, 011906 ~2004!
closer to the 3D KS predictions for a prolate shape than
2D expectations, but this is probably purely accidental.

III. ANALYSIS OF THE TRANSITION WITHIN
THE AF APPROACH

Stationary states result from a balance between the en
flux entering in the system and the hydrodynamic dissi
tion. From this general consideration it is, for example, e
to extract the main dependences of the Stokes drag f
acting on a sphere moving at velocityv in a viscous fluid:
the injected energy is simplyFv, whereF is the force ex-
erted on the sphere to compensate for the Stokes force
dissipation rate is given by

Ėhydro5E h

2 S ]v i

]xj
1

]v j

]xi
D 2

dV, ~9!

FIG. 5. Tank-treading to tumbling transition curve. Here w
compare the AF data, the Green function formulation, and the
theory. Two values ofe are plotted for the AF method and th
extrapolatede50 ~see Appendix C! value superimposes quite we
on those obtained using the boundary integral formulation.

FIG. 6. Dissipation field around the vesicle fort50.91 and,
from right to left and top to bottom,r 52, 4, 6, and 7.8, close tor c

~e/R50.068!. White areas are places where dissipation is maxim
The line indicates thef50 isocontour of the AF.
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where the integration covers the volume where dissipa
occurs. If we assume that the range of the flow perturba
due to the sphere is proportional to its radiusR, replacing¹v
by v/R and the volume integration by3R3 we recover the
classical dependencies of the Stokes force, namelyF
}hvR. This kind of heuristic analysis can be powerful whe
the typical scales are well defined. Conversely, when sev
length scales compete such arguments require a more q
titative analysis. This is indeed the case here where
swelling ratiot, which is directly connected to the ratio be
tween the large and the small axis of the vesicle, plays a
role. We thus have to analyze dissipation in more details

In Fig. 6 we present isocontour plots of the dissipati
field for a vesicle of reduced surfacet50.91 and for differ-
ent viscosity ratios,h in /hout52.0, 4.0, 6.0, and 7.8@close to
the tumbling transition for~e/R50.068!#. We can see tha
dissipation is localized in a very narrow areaoutside the
vesicle, we also see contributions along the diagonal axis
to the elongational component at 45 degrees~we checked
that these lines are not finite size effects by changing the
shape!. Indeed, the tank-treading motion creates very lit
dissipation inside the vesicle. This is not itself a surpr
since for a purely circular shape~t51!, the internal flow is
purely rotational and therefore does not dissipate energ
all. At lower values oft, the shape does no more permit
pure rotational flow inside the vesicle and dissipation occu
From expression~9! we can expect the following depen
dence for the internal dissipation:

Ėin}h inv tt
2 ~12t!a, ~10!

S

l.

FIG. 7. Internal dissipation rate as a function of the viscos
ratio.

FIG. 8. Tank-treading velocity as a function of the viscos
ratio for various values oft.
6-5
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BEAUCOURT et al. PHYSICAL REVIEW E 69, 011906 ~2004!
where v tt is the tank-treading velocity, which defines th
velocity scale anda is an exponent which should be close
unity at low values of 12t. The variations of the interna
dissipation are presented in Fig. 7, and we can observe
presence of a maximum. This maximum is in fact an art
cial effect due to the normalization byhout . The internal
dissipation rate is in fact proportional toh in , and the maxi-
mum results from a competition between growing values or
and a corresponding decrease of the tank-treading velo
~see Fig. 8!. A normalization byh in would have given mono-
tonic decreasing curves~like v tt). Amazingly, the tank-
treading velocity seems to reach a minimum at the transit

To check the validity of relation~10!, in Fig. 9 we present
a logarithmic plot ofĖin /(hv tt

2 ) as a function of 12t for
eight different values of the viscosity ratio, and we can s
that they nicely superimpose on a master straight line
slopea50.9.

The external dissipation rate is presented in Fig. 10. F
as already mentioned, the external dissipation is larger t
the dissipation inside the vesicle. Indeed the external di
pation is dominated by the shear itself, and is thus, stri
speaking, infinite. To analyze the contribution due to
vesicle we have subtracted the shear part and consid
Eout5Ėout2houtg

2L2, L is the length of the resolution box
Even with this prescription, the contribution of the vesic
remains larger outside than inside~a factor of 10!. A scaling
law is, however, more difficult to obtain since dissipati
outside the vesicle does not cancel when the tank-trea

FIG. 9. Log-log plot of the internal dissipation rate.

FIG. 10. External vesicular dissipation rate as a function of
viscosity ratio. The contribution of the external shear has been
tracted.
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velocity vanishes. We can observe that the external diss
tion decreases when the vesicle becomes more elongated~de-
creasing values oft! and when the viscosity ratio increase
in both cases the equilibrium angleu decreases.

The total dissipation in the system is plotted in Fig.
and is very similar to the external dissipation presented
Fig. 10, which is the leading contribution. Amazingly, th
global dissipation seems to exhibit a minimum close to
tumbling transition. But it is difficult to make conclusion
since numerical uncertainties are amplified close to the tr
sition point.

Above the critical viscosity ratio no stationary angle e
ists, as predicted by Keller and Skalak, rather, a tumbl
motion occurs according to the motion law~8!. This equation
is remarkably well satisfied, as shown in Fig. 12, ev
though the reduced surfacet50.747 corresponds to a regio
where the KS theory should become quantitatively insu
cient ~although qualitatively quite good!.

This figure shows that the tumbling motion is not a reg
lar rotation ~the density of points, sampled at a fixed fr
quency, is not constant!, especially close to the transition
rather, the tumbling motion is slow aroundu50 and is fast
for u5p/2. We can also see that the predicted KS valueA
52g/2 is well reproduced here. Superimposed to the tu
bling, i.e. the rotation of the main axis, remains a tan
treading motion. Tank treading can be studied by comput

e
b-

FIG. 11. Global dissipation rate as a function of the viscos
ratio.

FIG. 12. Test of the dynamical equation foru.
6-6
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STEADY TO UNSTEADY DYNAMICS OF A VESICLE IN . . . PHYSICAL REVIEW E69, 011906 ~2004!
the velocity field along the membrane in the tumbling fram
A variation of the tank-treading velocity is presented in F
13, where we observe the oscillatory behavior predicted
Keller and Skalak.

In this figure positive values ofv tt correspond to a clock
wise tank treading while negative values to an anticlockw
rotation, which means opposite to the tumbling motion. Ta
treading cancels foru5p/4 and 3p/4. This oscillatory mo-
tion is well described in the paper by Keller and Skalak,
we will not enter into details here; we simply mention th
this residual tank-treading velocity is five times smaller th
in the pure tank-treading regime. Since the motion is n
unsteady we expect transient effects to be important.
relaxation of the elastic constraints that applies on the m
brane are not instantaneous either in nature or in simulati
A basic test is to analyze the variation of the tank-tread
velocity along the contour of the vesicle. A perfectly ine
tensible membrane would correspond to a constant velo
along the contour. For our weakly extensible situation this
not indeed the case, and to quantify the variations of
tank-treading velocity we consider two extreme situatio
u.0 ~Fig. 14!, which corresponds to a very slow tumblin
motion ~we are close to the tumbling transition! in which
case the tension of the membrane is expected to be
equilibrated; andu.p/2 ~Fig. 15!, which is the worse situa
tion for the membrane since the tumbling motion is very f
at that point of the trajectory and the tension of the me
brane has little time to relax.

FIG. 13. Residual tank-treading velocity in the tumbling fram

FIG. 14. Tank treading velocity along the membrane foru50.5
degrees.
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It is then not a surprise if the variation of the tan
treading velocity along the contour is much more importa
in the second case~20% in amplitude! than in the first one
~3%!. The variation was only 1% in the steady tank-treadi
regime~see Fig. 16!.

As for the tank-treading case, dissipation can be analy
inside and outside the vesicle during its rotation. In Fig.
we show the variations of the internal dissipation rate a
function of the instantaneous orientation of the vesicle. N
surprisingly, dissipation is maximized when the modulus
the tank-treading velocity reaches its maximum, i.e., wh
u50 andp/2. Figure 18 shows the corresponding variati
of the external dissipation, and we can see that internal
external dissipation vary in opposite phase.

Although the variation of the internal dissipation is d
rectly related to tank-treading, the external dissipation
more complicated since both tank-treading, tumbling and
cluded volume effects play a role. The complementarity
the internal and external dissipation is then not compl
which is illustrated by the variation of the global dissipatio
~see Fig. 19!. As in the tank-treading regime, the intern
dissipation is only a fraction of the total dissipation due
the vesicle~10%!.

IV. CONFINEMENT EFFECTS

In order to tend towards a more realistic description of
tank treading-tumbling transition, it appears necessary

. FIG. 15. Tank-treading velocity along the membrane foru584
degrees.

FIG. 16. Variation of the tank-treading velocity along the me
brane in the tank-treading regime.
6-7
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modify slightly the system. We considered the highly ide
ized case of an isolated vesicle submitted to a constant s
flow, but in practice we have to take into account the co
finement effects, simply because this corresponds to the
perimental situation. The rheology of blood in capillaries,
example, exhibits features directly related to confineme
the apparent viscosity depends of the vessel diameter; th
the so-called Farhaeus-Lindquist effect. We will, howev
not consider here the geometry of a capillary tube, since
flow in such situations is quadratic~Poiseuille flow!. This
type of flow is known to induce lift forces on vesicles or re
blood cells which tend to group the cells at the center of
tube. On the axis of the tube however, shear cancels.
geometry is then not very appropriate to investigate sh
effects. Rather, we will confine the vesicle between t
plates, each of them moving in opposite directions. To eli
nate drifts due to the lift force@19# the vesicle is placed at th
center of the cell. Since the plates move in opposite dir
tions, a shear remains at that point controlled by the rela
velocity of the plates. This geometry can easily be incor
rated in the AF method: we just have to introduce a no-s
boundary condition on the plates located at the top and
bottom of the resolution box. The top and bottom bound
conditions now correspond to a cancellation of the flow
duced by the vesicle~the total velocity field minus the im
posed shear flow!, whereas we previously considered pe
odic boundary conditions for this component of the flow.

In Fig. 20 we plot the critical viscosity ratio as a functio
of the confinementR/L, whereL is the distance between th
shearing plates. We can observe that the critical visco

FIG. 17. Internal dissipation rate as a function ofu.

FIG. 18. External dissipation rate as a function ofu. The shear
contribution has been subtracted.
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ratio increases rapidly when the distance between the pl
is reduced. It reaches even twice the bulk value when
distance between the plates is of the order of seven times
effective radiusR, which is not that a strong confinemen
The extrapolated bulk value is obtained to ber c55.5 which
is very close to the valuer c55.4 obtained with periodic
boundary conditions~but no rigid walls at the boundaries! as
shown in Fig. 26. The transition curve is presented in F
21, obtained as explained above. The lower curve co
sponds to an isolated vesicle, and the upper one to a ve
between two plates, with a confinement ofR/L50.13. As
expected, due to the geometrical constraints, the critical
cosity ratio is sensitively increased in the case of the non
nishing confinement. It is not a surprise in itself because
the increase of the dissipation between the vesicle and
plates. The energy needed for the vesicle to tumble is i
sort dissipated.

Of course, a further quantitative analysis of the dissip
tion is required in this geometry, but a strong dependenc
the rheology of such a binary system under confinement
be expected at this level.

V. DISCUSSION

The KS theory seems to provide an accurate descrip
of the physics involved in the dynamics of vesicles in a sh
flow. We checked that the theory is qualitatively excelle
and gives quite good quantitative predictions for vesicles
two dimensions. A 3D numerical calculation~with no viscos-
ity contrast! @20# regarding the pure tank-treading motio

FIG. 19. Global dissipation rate as a function ofu.

FIG. 20. Variation ofr c as a function of the confinement. Her
t50.8.
6-8
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STEADY TO UNSTEADY DYNAMICS OF A VESICLE IN . . . PHYSICAL REVIEW E69, 011906 ~2004!
arrived to the same conclusion for this motion. This resul
not fully intuitive, since the theory does not incorporate t
physics of the membrane itself~the shape is assumed to b
ellipsoidal!. We could check numerically that in the fre
boundary problem the curvature deformabilityCk of the
vesicle does not play a key role, at least in the regimeCk
,1 corresponding to a weak deformability. Indeed, the m
physical ingredients in this problem seem to be the geom
cal constraints of fixed perimeter and area~surface and vol-
ume in three dimensions!, captured by the KS theory. Inter
estingly, these properties are common to vesicles and
blood cells, which may explain the observed similarities b
tween red blood cells and vesicles in a shear flow. But
comparison is not complete, and several features of the
blood cell motions are not accounted for by a simple ves
model. As an example, the shear rate only defines a t
scale in the KS theory; it simply appears as a prefacto
dynamical quantities and can therefore be eliminated by
caling time. As a consequence, the transition threshold d
not depend on the shear rate, which is not fully the case
red blood cells. We can then conclude that other time sc
should play a role in the dynamics of red blood cells, a
that the dependence of the transition in the shear rate sh
come from a competition between the forced time scalg
and internal time scales of the cell. These internal time sc
also exist for vesicles;tshape5hR3/k is the relaxation time
of the shape at fixed perimeter~surface in three dimensions!,
andCk expresses precisely the competition between the
formation imposed to the vesicle by the shear flow and
relaxation of the shape due to the curvature energy. Howe
we have seen that the dependence inCk is very weak in the
low deformability regime. The situation may change in t
large deformability regime, but we have not yet investiga
this regime. A second internal time scale appears in our
mulation due to our prescription for the Lagrange’s para
eter field: the membrane is not strictly inextensible. Exten
bility introduces a new relaxation time scale, associated
the perimeter~or the surface in three dimensions! which we
chose very small compared totshapeandg21 ~of the order of
1023) so that the constraint is almost instantaneously sa
fied. We could, however, consider more deformable enti
and expect a shear dependence of the results in this cas
least another time scale enters into play for red blood c

FIG. 21. Here we plot the tank-treading to tumbling transiti
curve for a confinementR/L50.13 and the extrapolated bulk tran
sition curve.
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since the membrane has a shear modulus, which again
fines a relaxation scale. Account of these various relaxa
scales lead to quite complex behaviors, as illustrated in@14#.
Reducing the complexity motivated our simplistic approa
where time scales are included progressively. A study of
tensible membranes is currently in progress. Introduction
the full complexity does not affect the overall picture of th
tank-treading to tumbling transition. The transition is simp
more progressive, oscillations have indeed been observe
its neighborhood that rends the experimental or numer
analysis more difficult. The vesicle model presents, on
contrary, a sharp transition, and thus confinement effects
collective effects if several vesicles interact can be int
preted more easily. The transition itself has been investiga
in this article on the basis of a dissipation analysis. T
analysis reveals that most of the dissipation occurs out
the vesicle, the flow inside the vesicle rotates in quasi-so
manner and does not generate a significant shear. This p
is important since it indicates that a non-linear behavior
the encapsulated fluid will probably not affect too much t
results. Viscoelasticity will, on the contrary, define new tim
scales which will compete with all the other times scales
the system, as previously discussed. We thus expect
coelastic behaviors of the encapsulated fluid to be more
ible than non-linearities~the study is, however, still to be
done!. On the same ground, a precise description of the fl
outside the vesicle seems to be more important than the
scription inside, and this may be the reason why the
theory works so well: it is based on Jeffery’s analytic so
tion for rigid ellipsoids outside the particle. The tan
treading motion being introduced in an approximate way
does not strictly satisfy the local inextensibility of the mem
brane, which affects the flow inside~it is the main compo-
nent! much more than outside~it is only part of the flow!.
The tumbling motion is simply a global rotation. This diss
pation analysis also shows several intriguing features:
total dissipation decreases as we approach the trans
where it seems to be minimal~the derivative cancels!. In the
tumbling regime dissipation oscillates, the internal and ex
nal dissipation are out of phase, which expresses an
change between the tumbling motion~large dissipation out-
side, low dissipation inside! and the tank-treading motion
~low dissipation outside, large dissipation inside!. We could
then expect the oscillations to compensate, but this is not
case since the amplitude of the external oscillations is m
larger than the internal ones. The internal dissipation is
deed directly related to the residual tank-treading motion
the tumbling regime, and is therefore very small (v tt is five
time smaller in the tumbling regime than in the tank-tread
regime for the parameters we have considered!. A dissipation
analysis would be also interesting in confined situatio
where we observe a strong effect of the confinement on
transition location: confinement favors the tank-treading
gime. The rheological consequences have not yet been in
tigated, but this is certainly a problem to consider.

VI. CONCLUSION

We have presented a numerical study of the tank-tread
to tumbling transition in vesicular systems, based on the H
6-9
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frich formulation, and compared our results to the KS theo
We have first compared the newly proposed AF method
the boundary integral formulation, and have shown that
AF formulation can provide quantitative results when fin
size effects and the sharp interface limit are considered
comparison of our results with the KS theory shows t
although slight quantitative discrepancies exist, the
theory represents a very good framework for the investi
tion of the dynamics of a single vesicle in a shear flow. In
low deformability regimeCk,1 the boundary integral for
mulation shows that indeed the results are independent oCk
which is a basic assumption in the KS theory. An analysis
the dissipation in the system shows that the main contr
tion ~once the shear contribution has been removed! comes
from the external flow; the internal fluid rotation represe
only 10% of the dissipation. In the tumbling regime we o
serve oscillations of the dissipation, with an opposite ph
for the internal and external dissipation, indicating an e
change between the tumbling motion and the residual t
treading. Finally, we have analyzed the confinement effe
on the transition and shown that the critical transition line
strongly shifted by the confinement~even when the box size
is five times larger than the vesicle!. We believe that this
effect should have strong consequences on the rheolo
properties of the medium.

There are several features which have not been discu
here, since our first focus was to make the presentatio
simple as possible. First, we have treated the two monola
as forming a single entity; that is, we did not account fo
relative sliding between the two monolayers@21#. If the dis-
sipation associated with the relative motion becomes com
rable to that in the bulk, we expect this to affect the tumbli
transition. Most important is that we have confined our stu
to 2D vesicles, and this assumption must be relaxed in
future if one whishes to have a more quantitative compari
with experiments. Several other ingredients must then be
corporated such as the spontaneous curvature and the
difference between the two monolayers, two ingredients
have proven to be essential in describing the equilibri
shapes of vesicles. We have developed an AF approac
three dimensions, and it turns out that speeding up the c
putation efficiency is imperative before performing a syste
atic quantitative study. This question is under considerat
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APPENDIX A: BOUNDARY INTEGRAL METHOD

The boundary integral method is the traditional techniq
used to solve classical hydrodynamical problems in
Stokes limit. The method is based on the resolution of
Stokes equations~2! using the Green function’s formalism
Since we consider a two-fluid problem, the internal flu
with viscosityh in and the external fluid with viscosityhout ,
it is interesting to separate the integration domain into t
subspaces:V in , the internal medium, andVout , the external
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fluid. The boundary between these two domains will cor
spond to the membrane forming the vesicle. Let us first c
sider an homogeneous fluid with generic viscosityh flowing
in a generic domainV. We assume moreover that the fluid
subjected to a force fieldf~r ! defined inV. In the Stokes
limit, the flow is obtained by solving the Stokes equation f
incompressible Newtonian fluids:

hDv2“p1f50,
~A1!

“•v50.

These equations have to be supplemented by approp
boundary conditions at the edge of the integration domainV.
The derivation of both the integral equations together w
the Green’s functions have been discussed at length in
@22#, so we shall just briefly recall the main steps, and e
phasize on how a viscosity contrast must be incorporated
V is the full space, and boundary conditions at infinity a
v50 and no surface force apply at infinity, we can expe
linear relations between the velocity fieldv ~the pressure
field p! and the force fieldf of the forms

hv0~r !5E
V

Ḡ~r2r 8!f~r 8!dr 8,

p05E
V

q~r2r 8!•f~r 8!dr 8.

Insertion of these expressions into the Stokes equation~A1!

leads to the equation for the Green tensorḠ and the Green
vectorq:

]kkGil 2] iql52d~r2r 8!d i l ,

]kGik50,

where indicesi, l, andk stand for the components ofḠ and
q along thex, y, andz axes;] i is a derivation along thei axis,
and a summation over repeated indices~Einstein convention!
is assumed. When surface forces apply at the edge]V of the
integration domainV or the velocity field does not cance
extra contributions appear, and the generic expression for
velocity field is

hd~r ,V!v~r !5E
V

Ḡ~r2r 8!f~r 8!dr 8

1E
]V

Ḡ~r2r 8!fs~r 8!dr 8

1hE
]V

v~r 8!•K̄~r2r 8!•n̂~r 8!dr 8,

~A2!

wherefs are the surface forces at the boundary, andn̂ is the
normal vector at the boundary pointing outsideV. d ~r ,V! is
unity whenr is located insideV, and half whenr is at the
boundary and zero outside.K̄ is a third order tensor. The two
6-10
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first contributions account for the external volume and s
face forces applying on the fluid located inV while the last
term accounts for a non-vanishing velocity field at the b
der. Expressions forḠ and K̄ in three dimensions are@22#

K̄ i jk
3D5

3

4p

xixjxk

x5 ,

Ḡi j
3D5

1

8p S d i j

x
1

xixj

ẋ3 D .

Here x stands forr2r 8 and x is the modulus ofx. The 2D
expression for these tensors can be obtained by integra
along thez axis:

K̄ i jk
2D5

1

p

ẋixjxk

x4 ,

Ḡi j
2D5

1

4p S 2d i j log~x!1
xixj

x2 D .

Care must be taken@23# while integratingḠ since a logarith-
mic divergence occurs; a cutoff in thez direction can be
introduced which does not play any role when the integra
the external forces applied on the system vanishes~the situ-
ation here!.

The generic equation~A2! can now be applied to the ex
ternal and internal media forming the vesicle,Vout andV in .
In the absence of external forces, the velocity field at
membrane can be written from Eq.~A2!:

h in

2
vmem~r !5E

mem
Ḡ~r2r 8!fs

in~r 8!dr 8

1h inE
mem

v~r 8!•K̄~r2r 8!•n̂in~r 8!dr 8

hout

2
vmem~r !5E

mem
Ḡ~r2r 8!fs

out~r 8!dr 8

1houtE
mem

v~r 8!•K̄~r2r 8!•n̂out~r 8!dr 8

1houtE
in f inity

v~r 8!•K̄~r2r 8!•n̂out~r 8!dr 8,

~A3!

where ‘‘mem’’ denotes the membrane and ‘‘infinity’’ the con-
tour at infinity, f s

in and f s
out are the surface forces applie

respectively to the internal and external fluid at the me
brane, this force is due to the membrane, and thereforef s

in

1f s
out5fmem. The last term in the second equation of Eq

~A3! accounts for the externally applied flow~shear in the
present situation!. Summation of these two expressions lea
to
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h in1hout

2
vmem~r !

5E
mem

Ḡ~r2r 8!fmem~r 8!dr 81~h in2hout!

3E
mem

v~r 8!•K̄~r2r 8!•n̂~r 8!dr 8b1houtvshear,

~A4!

where n̂ is now the normal vector pointing outside th
vesicle.

The membrane forcefmem is deduced from the Helfrich
free energy

EH5E
memb

H k

2
c21z~s!J ds.

c is the local curvature of the shape and the factorz is the
Lagrangian parameter which ensures a constant perimete
the vesicle. Note that both the inner and the outer fluids
supposed to be incompressible. A second Lagrangian pa
eter to ensure a constant surface for the vesicle is thus
less in our case. The membrane force is derived from the
energy by the equation

fmem52
dEH

dr
.

In two dimensions@19#,

fmem52kS d2c

ds2 1
c3

2
n̂D1

dz

ds
t̂1czn̂ ~A5!

where t̂ is the tangent vector at the membrane, (t̂,n̂) form a
direct ortho-normal basis, andc is defined bydt̂/ds51cn̂, s
is the curvilinear coordinate. The first two terms are curv
ture forces. The third term describes the adjustable force n
essary to ensure a constant perimeter, and can be interp
as a Marangoni effect. The fourth term is the well-know
Laplace force. This force stemes from the pressure differe
linked to curvature effects on both sides of the membran

The numerical procedure is simple: from the shape of
vesicle we can compute the membrane forcefmem. The
knowledge offmem allows us to get the expression of th
velocity field at the membrane interface thanks to the integ
formulation ~A4! and thus to predict its motion. The bas
numerical strategy was described in Ref.@23#.

APPENDIX B: ADVECTED-FIELD APPROACH

1. Definitions

Alternatively, Eqs.~6! can be modified to derive a mor
flexible scheme which applies to various physical situatio
~boundary conditions or complex non-Newtonian fluid!.
The idea is to replace the so-called ‘‘sharp interface’’ pro
lem presented above by a smooth interface@17#. The vesicle
is now described by an advected-fieldf which goes
6-11
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BEAUCOURT et al. PHYSICAL REVIEW E 69, 011906 ~2004!
smoothly from21 to 11 while crossing the membrane.21
will for example represent the internal part of the vesicle a
11 the external fluid, the membrane being located at
zeros of the AF. Obviously we must recover the ‘‘sharp
terface’’ description when the widthe of the ‘‘smooth inter-
face’’ goes to zero. This limit is called the ‘‘sharp interfac
limit’’ and will be presented in a forthcoming publication.
simple way to produce a field going from21 to 11 with a
typical interfacial sizee is to consider the following func-
tional:

Eintrinsic@f#5E E dxdyH 1

4
~12f2!21

e2

2
~“f!2J .

~B1!

This functional corresponds to the simplest Landau-Ginzb
description of a binary interface, the square-gradient the
Minimization of this functional in the special case of a fl
interface leads to the following interfacial profile:

f~r !5tanh~r /e& !, ~B2!

where r is the coordinate in the normal direction, with th
convention thatr 50 at the interface. We have explicitl
used the boundary conditionsf(6`)561 and f8(6`)
50. When the interface is curved, however, the Lapla
force contained in Eq.~B1! induces a curvature dependen
of the shape. Elimination of this force is thus necessary
keep the hyperbolic tangent shape~B2!, and to suppress spu
rious relaxations, as will be discussed later.

To obtain the full energy functional of the vesicle with
the AF approach, we have to generalize what we called
configurational energy~E! in Appendix A. To this end, we
need to introduce a coordinate perpendicular to the m
brane~r! and rewrite the integrals along the membrane in
following way:

E ds→E dsE drdshape~r !,

where dshape(r ) is the ‘‘shape function’’ of the membran
which should reduce to a Dirac distribution centered on
membrane in the sharp interface limit. From its definiti
dshape(r ) must satisfy the normalization conditio
*drdshape(r )51. A convenient choice for this function is, i
Cartesian coordinates,

dshape~r !5
u“fu

2
, ~B3!

which satisfies the normalization condition since the
vected field goes from21 to 1 while crossing the membran
Here,r denotes the current position in Cartesian coordina
Expression~4! of the configurational energy can then be e
ily extended as follows:

Econ f ig5
k

2 E E dxdyc2
u“fu

2
1E E dxdyz

u“fu
2

.

~B4!
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The curvature fieldc can easily be expressed in terms of t
AF if we define the normal vector fieldn̂ and the tangentia
vector field t̂ as

n̂5
“f

u“fu
,

t̂5n̂3 ẑ. ~B5!

Here ẑ is the unit vector normal to the 2D plane. This de
nition corresponds to the choice

dt̂

ds
51cn̂ ~B6!

in curvilinear coordinates. One can easily check that the c
vature field satisfies

c52“•n̂. ~B7!

z is a more complex field which cannot be expressed a
simple functional off ~it is history dependent, as we wil
see!.

2. Expression of the force

To obtain an explicit expression for the external forcefext
it is necessary to differentiate the configurational ene
Econ f ig with respect to the local position of the membrane
local displacement of the membrane by a vectordR corre-
sponds to the transformationf(r )→f(r2dR) @e.g., z(r )
→z(r2dR)]. As a result,

df

dR
52“f52u“fun̂522dshape~r !n̂,

dz

dR
52“z. ~B8!

From these expressions we can easily see that all contr
tions to the total energyE having a functional dependence
f will give rise to normal forces, as a result, the only co
tribution that leading to a tangential force is thez term. Since
the derivation of the force is a bit tedious~see Appendix D!
we simply write down the final expression here:

Fcon f ig5F2kH c3

2
1 t̂•“~ t̂•“c!J n̂1zcn̂1 t̂•“z t̂Gdshape~r !,

~B9!

which is to be compared to its analog~A5! in the sharp
interface limit@19#, with prescription~B6! for the curvature:

Fcon f ig5fmem52kH c3

2
1

d2c

ds2J n̂1zcn̂1
dz

ds
t̂, ~B10!

wheres is the curvilinear coordinate. From these two expre
sions we can note thatt̂•“ is the natural extension ofd/ds.
6-12
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3. Final equations

Velocity field: Expression~B9! allows to calculate explic-
itly the local forcefext acting on the velocity field for a given
configuration of the AFf~r !. The Stokes equation can b
solved using a relaxation scheme:

ev

]v

]t
5“•@h~“v1“vT!#2“P1fext , ~B11!

whereev is a density scale which is related to the relaxat
time ~and thus defines an effective Reynolds number!, and
fext[Fcon f ig as given by expression~B9!. The pressure field
must be adjusted to ensure incompressibility:

“•v50.

When a viscosity contrast exists between the fluid enclo
into the vesicle and the external fluid,h is position depen-
dent. A simple prescription forh is to seth5hout(11f)/2
1h in(12f)/2 which guarantee a continuous variation
viscosity while crossing the membrane. We used this p
scription here.

Advected field: The dynamical equation for the AF can b
derived from the conditionvmem5v which specifies that the
membrane is simply advected by the flow. Pure advectio
unfortunately not numerically stable with ordinary numeric
schemes, and it does not guarantee that the final shape o
AF minimizes the energy functional~B1!. To cure this prob-
lem, we can write the following dynamical equation:

]f

]t
52v•“f1efS 2

dEintrinsic

df
1ce2u“fu D ,

~B12!

where we recognize the advection contribution2v•“f and
the restoring force2dEintrinsic /df. Note the presence of a
additional term,ce2u“fu, as suggested by Folchet al. @24#,
that plays a very important role in the AF method. To und
stand the role of this counter-term, it is interesting to wr
the dynamical equation in a more explicit way, using t
prescription~B1! for the functional:

]f

]t
52v•“f1ef„f~12f2!1e2~Df1cu“fu!….

We show in Appendix E that in the sharp interface lim
~e→0!, using the dimensionless rescaled variabler * 5r /e,
the combinationDf1cu“fu simply reduces to]2f/]r * 2

1O(e2). The steady AF profile across the interface redu
then, up to ordere2, to the profile of theplanar interface
~B2!, and is thus not sensitive to the local curvature. T
physical implication is that the lateral relaxation of the glob
shape induced by the Laplace force due to the surface ten
of the Landau-Ginzburg theory has been suppressed@the
counterterm corresponds precisely to the opposite of
Laplace force, which can be checked by integrating t
counter term across the interface, with expression~B3! for
the shape function#. An important consequence, justifyin
the name of the method, is that the AF is quasipassive:
simply transported by the flow, whereas in the absence of
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counterterm, the vesicle would simply disappear to minim
Eintrinsic . Since terms of ordere2 remain, drifts can be ob-
served after a while, but since in most numerical implem
tations the grid spacingh is of the order ofe, and the usual
discretization of the differential operators is of orderh2, it is
in practice useless to go beyonde. The key point is then to
adjust the value ofef such that the drifts remain negligibl
while the numerical scheme remains stable. In practice,ef is
of the order of unity. Although the counterterm cancels t
first order ine in the AF equation, corrections of ordere are
still present in the velocity equation, and thus linear dep
dences of the results ine can be expected in general. Bu
these corrections only affect the results in a quantitative w
as we will see below.

Lagrange’s parameter field: The last equation concern
the Lagrange’s parameter fieldz that appears in the force
associated to the constraint of fixed local length of the me
brane@see Eq.~B10!#. Unfortunately the functional relation
between the perimeter andz is not known explicitly. We will
then use a prescription based on a physical interpretatio
z, namely that this field corresponds to a local tension of
membrane. In a linear response theory we can assume
this tension is proportional to the local extension of t
membrane. From this interpretation, we postulate a phen
enological equation forz:

dz

dt
52v•“z1Tt̂•~ t̂•“ !v, ~B13!

whereT is a ‘‘tension’’ constant~energy per unit surface! and
t̂•( t̂•“)v simply representst̂•]v/]s in the sharp interface
limit ~s is then the curvilinear coordinate! which is nothing
but the local extension rate of the membrane. With this p
scription,z is proportional to the local extension of the mem
brane.

4. Numerical procedure and parameters

Both the advected fieldf~r !, the velocity fieldv~r ! and
the tension fieldz~r ! are discretized on a square lattice
sizeNx3Ny whereNx andNy are taken of the order of 300
and the differential operators are discretized on this lat
using algorithms of order two cylindrically symmetric. Ro
tational symmetry is very important in this problem, and ca
has been taken to ensure it. Tests with the more symme
hexagonal lattice have been performed providing the sa
results. From an initial configuration off~r !, v~r !, andz~r ! it
is possible to compute their time evolution by integration
the equations presented in the previous section using a fo
order Runge-Kutta solver. Periodic boundary conditions h
been used at the border of the simulation box forf~r !, z~r !
and the velocity field induced by the vesicle~i.e., the actual
velocity field minus the imposed external field!. These peri-
odic conditions on the relevant fields allowed for implic
algorithms in Fourier space, of special interest for solvi
the Stokes equation combined with the incompressibi
constraint.

We have chosen the following system of units: the u
length isR5AS/p whereS is the surface of the vesicle,R is
6-13
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then the typical radius of the vesicle which is of the order
R.10mm; the time unit is defined as the typical time for
vesicle to relax to its equilibrium shapetshape5houtR

3/k;
the mass unit is fixed by settingev51. The physical dimen-
sionless control parameters are as follows.

Ck5houtgR3/k5gtshape, the ‘‘curvature’’ number
controlling the curvature deformability of the vesicle
in the external flow. A large value ofCk corresponds
to a large deformation. In practice we setCk50.5,
which corresponds to an intermediate regime.
CT5houtgR/T, the ‘‘tension’’ number that controls
the perimeter variation due the externalflow. A large
value ofCT means a large extensibility of the mem-
brane. Here we setCT to 1023 on the contrary, to
ensure the constraint of fixed perimeter.
Su5Rc/Ck5evk/hout

2 R, the Suratman number,
which represents the Reynolds number Re estimated
using tshapeas the typical time scale. This number is
fixed to 1022 in practice, since we work in the Stokes
regime. Smaller values have been tested, slowing
down the computation speed without affecting the re-
sults.
r 5h in /hout , the viscosity contrast typically between
1 and 10 here.
t54pS/P2, the swelling ratio in two dimensions~S
is the internal area and P the perimeter!, between 0.7
and 1.

The technical parameters associated to the AF equat
or appearing in the numerical scheme are
e the interfacial width of typical value 0.035R.
h the lattice spacingdx5dy5h50.03R.
Nx , Ny the number of grid points in a direction varie

from 200 to 500.
dt the time step is of the order of 1023tshape.
tf51/ef the AF relaxation time is of the order of

0.2 tshape.

APPENDIX C: TEST OF THE METHODS

1. Equilibrium shapes

When no external force is applied to a vesicle its sha
relaxes to minimize the curvature energy with the constra
of a fixed perimeterP and a surfaceS. These equilibrium
shapes have been thoroughly investigated in two or th
dimensions by several authors, and can be obtained in
sharp interface description by a direct integration of
minimization equation using a shooting method. In Fig.
we compare the results obtained with the advected fi
method to the sharp interface description. In this figu
circles correspond to the isocontourf50 of the advected
field, and the solid line to the sharp interface data. We
see that these two methods are in fairly good agreem
whatever the value of the reduced surfacet54pS/P2. In
Fig. 22 the perimeter has been arbitrarily fixed toP52p.

Since the KS theory assumes a fixed ellipsoidal shape
the vesicle, it is interesting to compare the actual equilibri
shapes to ellipsis. Such a comparison is presented in Fig
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For swelling ratiost larger than 0.9 the equilibrium shape
reasonably well described by an ellipsis, as can be see
the figure; however, below that value the comparison
comes poor. Fort,0.85, indeed, the shape can even beco
nonconvex~see Fig. 22! and the KS theory can be expecte
to fail in this region. A direct test of the theory requires th
application of an external shear flow, a situation that we c
sider now.

2. Vesicle in a shear flow

More interesting is the situation where a vesicle is su
mitted to a shear flow. Such a situation is likely to occ
when a vesicle flows in the neighborhood of a wall, a re
tively common situation in practice due to sedimentation
confinement. The most basic shear flow to consider is
linear shear flow which is entirely determined by a sing
parameterg, the shear rate:

vx5gy,

vy50.

Placed in such a flow, a rigid elongated object is subjecte
an angular momentum inducing its rotation~or tumbling mo-
tion!. However, a vesicle is not a rigid object and when t
internal viscosity is identical to the viscosity of the extern
fluid it has been shown that the vesicle main axis reache
stationary orientation which is a function of the swellin

FIG. 22. Equilibrium shapes in two dimensions. Circles cor
spond to the AF method, while solid lines are the actual contou

FIG. 23. Comparison in two dimensions of the actual equil
rium shapes with ellipsis.
6-14
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ratio @16#. If u denotes the angle between thex axis ~shear
axis! and the main axis of the vesicle~see Fig. 2!, a quasi-
spherical shape would correspond tou5p/4. In general,
u,p/4. Although the global shape is stationary, it must
noted that the membrane still circulates along the cont
like a tank tread~see Fig. 2!.

Interestingly, when the internal viscosity increases up
infinity a transition should occur between the pure tan
treading motion described above and the tumbling mot
corresponding to a rigid body. We will use the notationr c for
the critical viscosity ratio at which the transition occur
which corresponds to the cancellation ofu. Such a transition
has indeed been predicted theoretically by Keller and Ska
for red blood cells by assuming ellipsoidal shapes. Howe
one can easily see from Fig. 22 that in situations correspo
ing to red blood cells in three dimensions~t;0.7! the shapes
are far from ellipsoidal, a careful quantitative analysis of t
results is then necessary. It has indeed been shown in
@17# that the AF predictions for the transition location diff
from the KS theory. These data were obtained fore
50.068R and a box sizeL510R. These two parameters ar
however, internal parameters of the resolution method, t
are absent from the KS theory that considered a sharp in
face and an infinite surrounding medium; the same is true
the Green function formalism, which allows for an exa
account of the boundary conditions at infinity. It is then im
portant to compare the AF predictions with the Green fu
tion formalism. Here we will analyze both the effect ofe,
and the finite size effects due to the periodic boundary c
ditions used in the AF method. In Ref.@17# the finite size
effects were considered, assuming that it was the lead
source of discrepancy in two dimensions, but the influenc
e was not investigated. We will focus first on the influence
e, and to this end consider the tank-treading regime,
which we have a steady state. In Fig. 24 we plot the va
tions of u as a function ofe for t50.8. We can observe
quasilinear dependence ofu as a function ofe. An extrapo-
lation to e50 leads to a valueu56.94 degrees~the Green
function data are 6.2 degrees!, whereas for a value ofe
5h, the minimal resolution, the AF value ofu is around 10
degrees, leading to a strong overestimation of the angle,
therefore of the critical viscosity ratior c corresponding to
u50 @16#. An extrapolation of the AF data toe50 is thus
necessary to obtain quantitative results. Finite size effe

FIG. 24. Variation ofu as a function of the interfacial widthe
for t50.8, r 54, andCk50.5.
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due to the chosen periodic boundary conditions can be in
tigated as well by changing the resolution box sizeL. Varia-
tions of the orientation angleu, as functions of the inverse
box sizeR/L for e50.035R and t50.8, are shown in Fig.
25. We observe that the equilibrium angleu increases with
the box size, and theL→` variations thus partially compen
sate for thee→0 variations. We can then expect thee→0,
L→` AF prediction foru to be of the order of 8.5 degree
rather than 6.2 degrees for the boundary integral meth
One should not wonder too much about this discrepan
since we are here in the vicinity of the critical angleu50,
where a small drift in the control parameters~the swelling
ratio for example! can induce dramatic changes inu. Inter-
estingly, the critical viscosity ratio proves to be rather inse
sitive to the finite size effects. In Fig. 26 we plot the critic
viscosity ratio fort50.8 as a function of the inverse bo
size, and we can see that up to the accuracy of our meas
ments~the size of the points! we do not observe a significan
evolution of r c . To obtain the transition curve, we can the
consider thee→0 limit only. The extrapolated transition
curve is presented in Fig. 5, wherer c have been computed
for two values ofe and extrapolated to 0.

The crosses correspond to a valuee/R50.047 and the
circles toe/R50.035. An extrapolation toe50 provides the
empty triangles that have to be compared to the results of
boundary integral formulation~the filled triangles!. We can
observe a fairly good agreement between the extrapol
AF values and the boundary integral reference results. T
curve also contains the KS predictions that will be co
mented upon Appendix D. To conclude this part, the A

FIG. 25. u as a function of the inverse box size fort50.8, r
54, Ck50.5, ande50.035R.

FIG. 26. Evolution of the critical viscosity ratio as a function
the box size.
6-15
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method is a very good semiquantitative approach that
provide accurate quantitative results if thee→0 andL→`
limit is carefully investigated. We will mainly use the boun
ary integral method to test the KS theory, and the AF meth
to analyze the physical behaviors more qualitatively.

APPENDIX D: DERIVATION OF THE FORCES

1. Derivation of the curvature force

Since the curvature energy is a functional ofu, the curva-
ture force is normal to the membrane and can be written

Fcurv52
dEcurv

df

df

dR
52

dEcurv

df
dshape~r !n̂. ~D1!

The second equality results from Eq.~B8!. The functional
derivative ofEcurv can be calculated as usual by doing t
transformationf→f1df, which gives

Ecurv@f1df#5
k

4 E E c2~f1df!u“f1“dfu.

From the definitionc52“(“f/u“fu) we easily deduce, in
two dimensions

dc[c~f1df!2c~f!52“•H t̂S t̂•
“df

u“fu D J ,

from which we obtain after some few integrations by par

dEcurv

df
52

k

4
“•H c2n̂1

t̂

u“fu
t̂•“~2cu“fu!J . ~D2!

To go further, we need to use an important specificity of
advected field, namely that its isocontours are parallel in
interfacial region. This property simply writes“•t50. After
elementary algebra, using the vectorial identity (t̂•“) t̂
5cn̂, one can easily obtain

“•~cn̂!50,

which implies from definition~B7! of the curvature fieldc
that

n̂•“c5c2,

and then the first term appearing in Eq.~D2! simply reduces
to 2kc3/4.

To calculate the second term, one has to use the b
property“∧“f50, which implies, together with“• t̂50:

t̂•“u“fu50.

We then obtain the final expression

dEcurv

df
52

k

2 H c3

2
1 t̂•“~ t̂•“c!J , ~D3!

which we can combine with expression~D1! to obtain the
curvature contribution to the force:
01190
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Fcurv52
dEcurv

df

df

dR
52kH c3

2
1 t̂•“~ t̂•“c!J dshape~r !n̂.

2. Derivation of the Lagrange’s force

This force originates from the contribution of th
Lagranges parameter to the Hamiltonian of the membran

ELagranges5E E drz
u“fu

2
.

An elementary translation leads to the following variation

dELagranges5E E drdz
u“fu

2
2E E dr“•H n̂z

2 J df

which, using Eq.~B8!, leads to the final expression for th
force:

FLagranges52
dELagranges

dR
5~ t̂•“z t̂1czn̂!dshape~r !.

APPENDIX E: ROLE OF THE COUNTER TERM

The precise role of the counter-term can be understoo
we analyze thee→0 limit. If r ands denote respectively the
normal and the tangential coordinates, the gradient and
placian operators can be written

“f5
]f

]r
n̂1

1

12c0r

]f

]s
t̂,

Df5
]2f

]r 2 2
c0

12c0r

]f

]r
1

1

~12c0r !2

]2f

]s2

1
r

~12c0r !3

]c0

]s

]f

]s
,

wheren̂ and t̂ are the normal and tangent vectors, andc0(s)
is the curvature of the zero isocontour of the AFf which has
been chosen as the origin of the normal coordinater @f(r
50,s)[0#. Whene→0 the width of the interface vanishe
and it is therefore convenient to rescale the normal coo
nate r by introducing the dimensionless coordinater *
5r /e. The Laplacian then rewrites

e2Df5
]2f

]r * 2
2c0e

]f

]r *
1O~e2!. ~E1!

By definition of the normal vectorn̂5“f/u“fu, f does not
vary in the tangential direction (]f/]s[0) so that u“fu
5]f/]r[1/e]f/]r * . Equation~E1! can then be rewritten
6-16
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e2Df5
]2f

]r * 2
2c0e2u“fu1O~e2!.

An expansion of the curvature fieldc(er * ,s) with respect to
e leads toc5c01O(e), and we can then replacec0 by c in
the previous expression. As a result,
rt

s.

g

01190
e2~Df1cu“fu!5
]2f

]r * 2 1O~e2!.

The role of the counterterm is then to cancel the curvat
effects up to the second order ine. As a result, the steady
shape of the AF profile is the profile of a flat interface.
v.
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